DynaSet[™] DROP IN ANCHORS - NON-CRACKED CONCRETE

GENERAL INFORMATION

Superior corrosion resistance:

- AISI 316(A4) Stainless Steel.

Ramset Design Method:

- * Uses technical data validated from testing in ANZ concrete substrates
- Suspended ceilings

Installation

- Drill hole at recommended diameter, to at least the anchor length in depth. Clean hole thoroughly with a brush. Remove debris by way of a vacuum pump, compressed air, hand pump etc.
- Insert anchor and push to required depth. Using the special setting tool, drive the expander plug down until shoulder of the setting punch meets top of the anchor.
- Position fixture then insert the bolt and tighten with spanner. The DynaSet[®] Drop-In anchor remains set in position if the bolt is removed.

Ramset

DynaSet[™] DROP IN ANCHORS - NON-CRACKED CONCRETE

Installation and performance details

	Installation details			Optimum dimensions*		Reduced Characteristic Capacity - Non-Cracked Concrete			
Anchor size, db	Drilled hole diameter, d _h (mm)	Anchor effective depth, h (mm)	Tightening torque, T _r (Nm)	Edge distance, e _c (mm)	Anchor spacing, a _c (mm)	Shear (steel)	Tension (concrete), ϕN_{uc} (kN)**		
						φ V us (kN)***	Concrete compressive strength, f' _c		
							20 MPa	32 MPa	40 MPa
M6	8	23	6	80	60	4.5	3.6	4.6	5.1
M6 Flanged	8	23	6	80	60	5.8	3.6	4.6	5.1
M8	10	28	10	100	70	5.8	4.9	6.1	6.9
M10	12	38	20	135	95	7.1	7.7	9.7	10.8
M10 Flanged	12	28	12	100	70	5.8	4.9	6.1	6.9
M12	16 #	48	40	170	120	13.2	10.9	13.8	15.4
M12 Flanged	16	48	40	170	120	13.2	10.9	13.8	15.4
M16	20	63	95	220	160	20.9	16.4	20.7	23.2
M20	25	78	180	275	195	26.3	22.6	28.5	31.9

* Note: For shear loads acting towards an edge or where these optimum dimensions are not achievable, please use the simplified strength limit state design process to verify capacity. **Note: Reduced characteristic ultimate concrete tensile capacity = ϕN_{uc} where $\phi = 0.60$ and N_{uc} = Characteristic ultimate concrete tensile capacity.

For conversion to Working Load Limit MULTIPLY $\varphi N_{uc}\,x\,0.55$

*** Note: Values for shear limited by steel - Reduced characteristic ultimate steel shear capacity = ϕV_{us} where $\phi = 0.80$ and V_{us} = Characteristic ultimate steel shear capacity. # Note: Hole diameter = 15mm for M12SS

All data relevant for Non-cracked concrete

DESCRIPTION AND PART NUMBERS

Anchor	Anchor	Effective	Thread	Part No.		
size, d _b	length, L (mm)	depth, h (mm)	length, L _t (mm)	Zn	S/S	
M6	25	23	11	DSM06	DSM06SS	
M6 Flanged	25	23	11	DSF06	-	
M8	30	28	13	DSM08	DSM08SS	
M10	40	38	16	DSM10	DSM10SS	
M10 Flanged	30	28	14	DSF10	-	
M12	50	48	21	DSM12	DSM12SS	
M12 Flanged	50	48	21	DSF12	-	
M16	65	63	28	DSM16	-	
M16	60	58	28	-	DSM16SS	
M20	80	78	35	DSM20	-	

Substrate thickness, b_m (mm)

b_m = 2 x h

Drilled hole depth, h₁ (mm) h₁ = L + 3 L = Anchor Length

ENGINEERING PROPERTIES

	Anchor	Carbon	Steel	Stainless	Section	
Anchor size, d _b	stress area, A _s (mm²)	Yield strength, f _y (MPa)	UTS, f _u (MPa)	Yield strength, f _y (MPa)	UTS, f _u (MPa)	modulus, Z (mm ³)
M6	24.3	350	440	480	600	36.9
M8	32.0	350	440	480	600	63.7
M10	40.7	340	430	480	600	100.2
M12	96.3	260	320	-	-	292.9
M12 S/S	72.0	-	-	480	600	214.9
M16	125.5	320	450	480	600	502.1
M20	198.3	198.3	450	480	600	789.6