

SEISMIC ANCHORS - COMPOSITE FLOORING APPLICATION

AnkaScrew[™] **& TruBolt**[™] **Xtrem**[™]

Anchoring Solutions for Composite Flooring Application

The anchors included in this technical datasheet are TruBolt™ Xtrem™ and AnkaScrew™ Xtrem Range. The data presented has been analysed and interpreted in alignment with the ACI355.2, ACI193, NZS4219 and the European Technical Assessment (ETA) documents of the products.

Anchor Design

Scan for more information

Specifiers Anchoring Resource Book

AnkaScrew[™] Xtrem

SEISMIC - MECHANICAL SCREW-IN ANCHORS COMPOSITE FLOORING APPLICATION

Installation and Seismic Performance Details for Composite Flooring System

Ancho	r Designation			Installation	n details			Optimum (dimensions*	Composite Metal Deck Detail (ComFlor 60 & ComFlor 80)																
					Anchor							Section Dimension	ns													
Anchor Size, d _b (mm)	Anchor Location	Drilled hole diam., d _h (mm)	Fixture hole diameter, d _f (mm)	Max. Fixture Thickness, t _{max} (mm)	effective depth, h _{ef} (mm)	Drill hole depth, h ₁ (mm)	Tight'g torque, T, (Nm)	***Edge diatance, e _c (mm)	***Anchor spacing, a _c (mm)	Min. Steel gauge thk (mm)	Min. concrete thickness h _{min,deck} (mm)	Max. Offset from Centre of lower flute (mm)	Max. depth of lower flute, h _{fl,max} (mm)	Min. width of lower flute, W _{min} (mm)												
6	Upper Flute	6			0	0		8	9	31	45	10	47	93	0.9	90	N/A	N/A	N/A							
0	Lower Flute	0	8	9	31	45	10	47	93	0.9	N/A	10	80	120												
	Upper Flute		40	10	10	10	40	40	40	10	10	10	10	10	10	14	F0	75		70	450	0.0	90	N/A	N/A	N/A
8	Lower Flute	8	12	14	52	75	20	78	156	0.9	N/A	10	80	120												
10	Upper Flute	10	14	4	43	65	40	65	100	0.0	90	N/A	N/A	N/A												
10	Lower Flute	10							129	0.9	N/A	10	80	120												

Ancho	or Designation					Seismic C1 C	racked Concret	e reduced characteristic ca	pacity (per anchor) #		
A				Tension, N _{Rd}	deck,seis (kN)			Shear PARAI V _{Rd,deck,seis,j}	LLEL to deck, PAR. (kN) **	Shear PERPENDICULAR to	deck, V _{Rd,deck,seis,PERP.} (kN)**
Anchor Size, d _h	Anchor Location		Co	oncrete compres	sive strength,	f'c		Concrete compre	ssive strength, f'c	Concrete compre	ssive strength, f'c
(mm)	Allohor Education	30 1	ИРа	35 M	Pa	40	MPa	≥ 30	MPa	≥ 30	MPa
. ,		Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group
6	Upper Flute	2.6	2.2	2.8	2.4	3.0	2.5	3.8	3.2	3.8	3.2
O	Lower Flute	3.5	3.1	3.8	3.4	4.1	3.6	3.8	3.2	3.8	3.2
8	Upper Flute			18.	0			6.8	5.8	6.8	5.8
ð	Lower Flute			18.	0			6.8	5.8	6.8	5.8
10	Upper Flute	7.6 6.5 8.2		7.0	8.8	7.5	10.8	9.2	10.8	9.2	
IÜ	Lower Flute	5.4	4.7	5.8	5.1	6.2	5.5	11.8	10.0	11.8	10.0

NOTE: Performance Data is based on test program in accordance with ACI 355.2 and conducted at University of Auckland in June 2021. Refer to report FTA-21/0005 for the Fastener Technical Assessment of the test results.

of concrete cone resistance for single anchors and groups of anchors. Furthermore γ_M is the partial safety factor relevant for the tensile failure mode. # Note 2. $V_{Rddeck,esis} = \alpha_{seis}^* V^0_{Rk,esis} / \gamma_M$ where $V^0_{Rk,esis}$ is the basic characteristic seismic resistance for a given shear failure mode and α_{seis} is the seismic reduction factor associated with cracking

of concrete cone resistance for single anchors and groups of anchors. Furthermore γ_{M} is the partial safety factor relevant for the shear failure mode.

Installation

- Drill hole to correct diameter and depth. Important: Use Ramset™ Dustless Drilling System to ensure holes are clean. Alternatively, clean clean thoroughly with brush and remove debris by way of vacuum or hand pump, compressed air etc.
- Using a socket wrench, screw the **AnkaScrew Xtrem** into the hole using slight pressure until the self tapping action starts.
- Tighten the AnkaScrew "Xtrem" until flush with fixture. If resistance is experienced when tightening, unscrew anchor one turn and re-tighten. Ensure not to over tighten. Refer to tightening torque for limitations.

Anchor Size	Drilled hole diam., d _h (mm)	Effective Length, L _e (mm)	Max. Fixture Thickness, t _{max} (mm)	Min. Steel Gauge thk for Steel Deck t _{sd} (mm)	AnkasScrew™Xtrem™ Description	Part Number
6	6	41	9	0.9	6mm x 50mm zinc	AS06050X
8	8	67	14	0.9	8mm x 80mm zinc	AS08080X
10	0 10 48		4	0.9	10mm x 60mm zinc	AS10060X

AnkaScrew™ Xtrem™

Anchor fixing location to composite/metal deck slab soffit

Effective depth h_{ef}, (mm)

 $t = total thickness of material(s) being fixed <math>(t_{max} + t_{sd})$

Where optimum dimensions are not achievable please contact Ramset to verify capacities.

^{**} For applications where the annular gap between the fastener and the fixture cannot be eliminated, multiply V_{Bit,deck,seix} x 0.5
*** Optimum dimensions for the lower flute are along the longitudinal direction where anchors are located within the Maximum Offset from the centre of the lower flute.

⁼ $α_{satis}^{*}N^0_{Rik,satis}/\gamma_M$ where $N^0_{Rik,satis}$ is the basic characteristic seismic resistance for a given tensile failure mode and $α_{satis}$ is the seismic reduction factor associated with cracking

nkaScrew™ Xtrem™ Rod Holder

SEISMIC - MECHANICAL SCREW-IN ANCHORS COMPOSITE FLOORING APPLICATION

Installation and Seismic Performance Details for Composite Flooring System

Anchor De	esignation		li	nstallation detai	ls		Optimum dimensions*		Composite Metal Deck Detail (ComFlor® 60 & ComFlor® 80)						
		Drilled	**Metric Threads	Anchor					Section Dimensions						
Anchor Size, d _b (mm)	Anchor Location	hole diam., d _h (mm)	suitable for Rod Hanger Fixing	effective depth, h _{ef} (mm)	Drill hole depth, h ₁ (mm)	Tight'g torque, T, (Nm)	***Edge diatance, e _c (mm)	***Anchor spacing, a _c (mm)	Min. Steel Guage thk (mm)	Min. concrete thickness h _{min,deck} (mm)	Max. Offset from Centre of lower flute (mm)	Max. depth of lower flute, h _{fl,max} (mm)	Min. width of lower flute, W _{min} (mm)		
	Upper Flute		M8 and M10	44	60	10	66	132	0.9	90	N/A	N/A	N/A		
6	Lower Flute	б		44						N/A	10	80	120		

Anchor De	esignation		Seismic C1	Cracked Concrete reduced	characteristic capacity (pe	r anchor) #			
Anchor Size, d _b		Tension, N _{Ri}	d,deck,seis (kN)		LEL to deck, _{is,PAR.} (kN)	Shear PERPENDICULAR to deck, V _{Rd,deck,seis,PERP.} (kN) Concrete compressive strength, f'c			
	Anchor Location	Concrete compre	ssive strength, f'c	Concrete compre	ssive strength, f'c				
(mm)		≥ 30	MPa	≥ 30	MPa	≥ 30 MPa			
		Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group		
C	Upper Flute	9.3	9.3	4.4	3.7	4.4	3.7		
6	Lower Flute	9.3 9.3		4.4	3.7	4.4	3.7		

NOTE: Performance Data is based on test program in accordance with ACI 355.2 and conducted at University of Auckland in June 2021. Refer to report FTA-21/0005 for the Fastener Technical Assessment of the test results.

- * Where optimum dimensions are not achievable please contact Ramset to verify capacities

 ** Metric Threaded Rod Steel Tensile and Shear Capacities need to be checked against the AnkaScrew Rod Hanger Tensile and Shear Capacities and use the Minimum value of the two.
- *** Optimum dimensions for the lower flute are along the longitudinal direction where anchors are located within the Maximum Offset from the centre of the lower flute # Note 1. N_{Rideck,sets} α_{sets} *N°_(Rices) / γ_{M} where N°_(Rices) is the basic characteristic seismic resistance for a given tensile failure mode and α_{sets} is the seismic reduction factor associated with cracking of concrete cone resistance for single anchors and groups of anchors. Furthermore γ_{M} is the partial safety factor relevant for the tensile failure mode.

Note 2. $V_{Rdock,wise} = \alpha_{sair} V^0_{Rd,seis} / \gamma_{tw}$ where $V^0_{Rk,seis}$ is the basic characteristic seismic resistance for a given shear failure mode and α_{sea} is the seismic reduction factor associated with cracking of concrete cone resistance for single anchors and groups of anchors. Furthermore γ_{tw} is the partial safety factor relevant for the shear failure mode.

Installation

- Using a socket wrench, screw the **AnkaScrew "Xtrem"** into the hole using slight pressure until the self tapping action starts.
- Tighten the AnkaScrew" Xtrem" until flush with fixture. If resistance is experienced when tightening, unscrew anchor one turn and re-tighten. Ensure not to over tighten. Refer to tightening torque for limitations.

AnkaScrew™ Xtrem™ Rod Holder

Anchor fixing location to composite/metal deck slab soffit

Description and Part Numbers

Anchor Size d _b (mm)	Drilled hole diam., d _h (mm)	Metric Threads suitable for Rod Holder Fixing	AnkasScrew™ Xtrem™ Rod Holder Description	Part Number
6	6	M8 and M10	6mm x 55mm zinc	AS06055XM810

SEISMIC - MECHANICAL ANCHORS COMPOSITE FLOORING APPLICATION

Installation and Seismic Performance Details for Composite Flooring System

Anchor E	Anchor Designation Installation details							0ptimum	dimensions*	Composite Metal Deck Detail (ComFlor 60 & ComFlor 80)					
			Fixture		Anchor	Drill hole depth, h ₁ (mm)	Tight'g torque, T, (Nm)		***Anchor spacing, a _c (mm)	Section Dimensions					
Anchor Size, d _b (mm)	Anchor Location	Drilled hole diam., d _h (mm)	hole diameter, d _f (mm)	Max. Fixture Thickness, t _{max} (mm)	effective depth, h _{ef} (mm)			***Edge diatance, e _c (mm)		Min. Steel Gauge thk (mm)	Min. concrete thickness h _{min,deck} (mm)	Max. Offset from Centre of lower flute (mm)	Max. depth of lower flute, h _{fl,max} (mm)	Min. width of lower flute, W _{min} (mm)	
M10	Upper Flute	10		Refer	60	75	45	90	180	0.9	100	N/A	N/A	N/A	
IWIU	Lower Flute	10	12	Description Part No. Table							N/A	No offset tested	80	120	
M12	Upper Flute	10	14	Refer	70	70 90	90 60	105	210		100	N/A	N/A	N/A	
IVIIZ	Lower Flute	Lower	14	Description Part No. Table	/0					0.9	N/A	No offset tested	80	120	

Anchor	Designation							Seismic C1 Cr	acked Concr	ete reduced	characterist	ic capacity (per anchor) #	ŧ					
Amahau				Tension, N _R	_{d,deck,seis} (kN)			Shear PARALLEL to deck, V _{Rd,deck,seis,PAR} (kN) **						Shear PERPENDICULAR to deck, V _{Rd,deck,seis,PERP.} (kN)**					
Anchor Size, d,	Anchor	Concrete compressive strength, f'c							Concrete compressive strength, f'c						Conc	rete compre	ssive strengt	th, f'c	
(mm)	Location	30 1	MPa	35	MPa	40 [MРа	30 1	MPa	35	MРа	401	MPa	30 1	MPa	35	MPa	40	MPa
(,		Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group	Single Anchor	Anchor Group
M10	Upper Flute	2.1	1.8	2.3	2.0	2.5	2.1	12.6	10.7	12.6	10.7	12.6	10.7	12.6	10.7	12.6	10.7	12.6	10.7
IWIU	Lower Flute	3.8	3.3	3.9	3.5	4.0	3.5	3.2	2.7	3.3	2.8	3.4	2.9	6.8	5.8	7.1	6.0	7.2	6.1
M12	Upper Flute	8.8	7.5	9.5	8.0	10.1	8.6	18.1	15.4	18.1	15.4	18.1	15.4	18.1	15.4	18.1	15.4	18.1	15.4
MIZ	Lower Flute	5.1	4.5	5.3	4.7	5.4	4.8	7.2	6.1	7.4	6.3	7.6	6.5	5.8	4.9	6.0	5.1	6.1	5.2

NOTE: Performance Data is based on test program in accordance with ACI 355.2 and conducted at University of Auckland in October 2017. Refer to report FTA-21/0005 for the Fastener Technical Assessment of the test results.

Installation

TruBolt™ Xtrem™

Anchor fixing location to composite/metal deck slab soffit

- Drill hole to correct diameter and depth. Important: Use Ramset™ Dustless Drilling System to ensure holes are clean. Alternatively, clean clean thoroughly with brush and remove debris by way of vacuum or hand pump, compressed air etc.
- Insert the **TruBolt™ Xtrem™** through the fixture and drive with a hammer until washer contacts the fixture.
- Tighten the **TruBolt™ Xtrem™** nut with a torque wrench to specified assembly torque.

Anchor Size d _b (mm)	Drilled hole diam., d _h (mm)	Effective Length, L _e (mm)	Max. Fixture Thickness, t _{max} (mm)	Min. Steel Guage thk for Steel Deck t _{sd} (mm)	Trubolt™Xtrem™ Description	Part Number
M10	10	65	4	0.9	10mm x 85mm zinc	T10085X
WITU	10	80	19	0.9	10mm x 100mm zinc	T10100X
M12	12	80	9	0.9	12mm x 105mm zinc	T12105X
IVIIZ	IZ	90	19	0.9	12mm x 115mm zinc	T12115X

Effective depth h_{ef}, (mm)

 $h_{ef} = L_e - t$

 $t = total thickness of material(s) being fixed (<math>t_{max} + t_{sd}$)

^{*}Where optimum dimensions are not achievable please contact Ramset to verify capacities.

For applications where the annular gap between the fastener and the fixture cannot be eliminated, **multiply V_{Botdeck,sets} **x** 0.5

***Optimum dimensions for the lower flute are along the longitudinal direction where anchors are located within the Maximum Offset from the centre of the lower flute.

[#] Note 1. $N_{Rddeck,seis} - \alpha_{seis}^* N^0_{Rdesei} / \gamma_W$ where $N^0_{Rk,seis}$ is the basic characteristic seismic resistance for a given tensile failure mode and α_{seis} is the seismic reduction factor associated with cracking of concrete cone resistance for single anchors and groups of anchors. Furthermore γ_W is the partial safety factor relevant for the tensile failure mode.

[#] Note 2. V_{Bulleck.seis} = α_{unit} VP_{Buseis} / Y_M where VP_{Buseis} is the basic characteristic seismic resistance for a given shear failure mode and α_{unit} is the seismic reduction factor associated with cracking of concrete cone resistance for single anchors and groups of anchors. Furthermore γ_M is the partial safety factor relevant for the shear failure mode.