

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0045 of 22 February 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Bonded fastener for use in concrete

ITW Australia (Ramset) 1 Ramset Drive Chirnside Park VIC 3116 AUSTRALIEN

Plant 1

29 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

European Technical Assessment ETA-18/0045

Page 2 of 29 | 22 February 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 29 | 22 February 2018

Specific Part

Specific Part

1 Technical description of the product

The Injection system RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™] is a bonded anchor consisting of a cartridge with injection mortar Chemset[™] 801 Xtrem[™] / Chemset[™] 800 Xtrem[™] and a steel element. The steel element consist of a threaded rod CHEMSET[™] ANCHOR STUD with washer and hexagon nut in the range of M8 to M30 or a CHEMSET[™] ANCHOR STUD XTREM[™] stud in the range of M12, M16 and M20 or a reinforcing bar in the range of diameter Ø 8 to 20 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 11
Displacements under tension and shear loads	See Annex C 7 / C 11

3.2 Hygiene, health and the environment (BWR 3)

Essential cha	acteristic				Performance
Content, emis substances	sion and/o	r release	of	dangerous	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

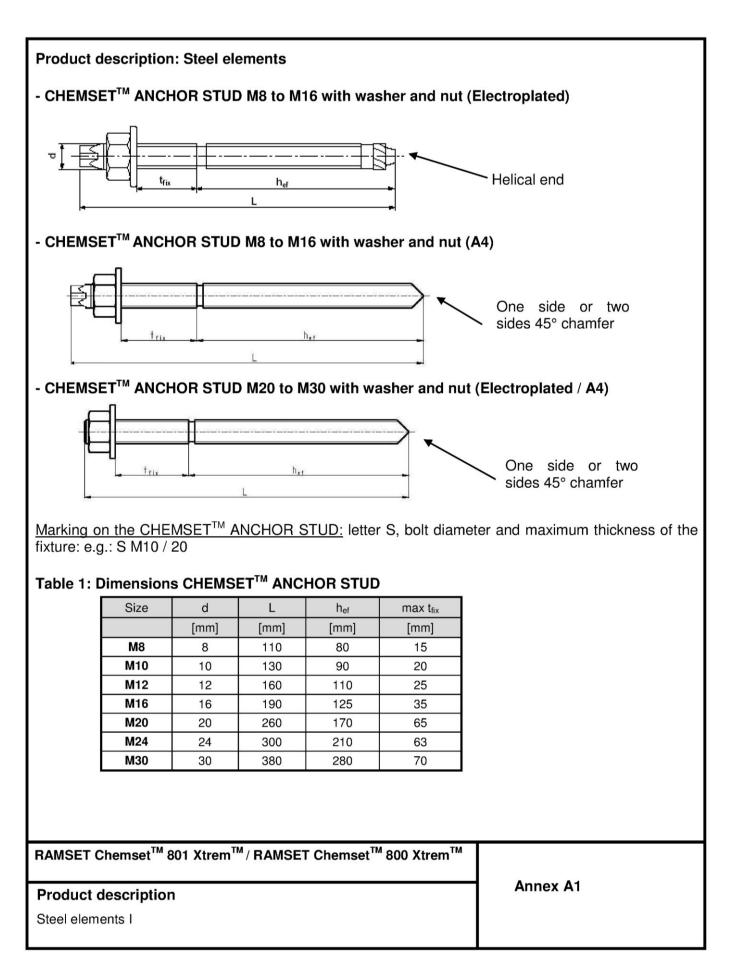
In European Assessment Document EAD 330499-00-0601the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-18/0045

Page 4 of 29 | 22 February 2018

English translation prepared by DIBt

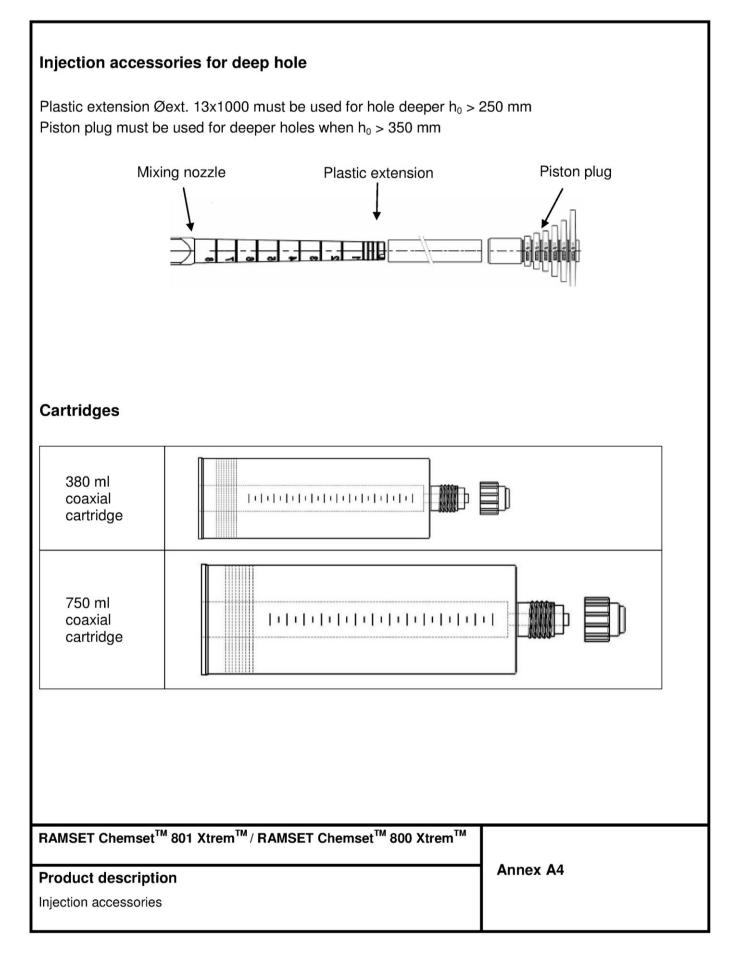

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 22 February 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

Γ



 Commercial standard threaded rods M8 to M30 (with washer inspection certificate 3.1 according to EN 10204:2004 	and nut) with						
Materials, dimensions and mechanical properties acc. to Tab	le A1						
 For steel grade 10.9: Proof of passed preloading test for the ambrittlement according to ENUSC 15220:1000 	detection of hydrogen						
embrittlement according to EN ISO 15330:1999							
marking of the embedment depth							
- Rebars Ø8, Ø10, Ø12, Ø16, Ø20, properties according to Ann	ex C of EN 1992-1-1						
marking of the embedment depth							
h _{ef}							
<>							
- CHEMSET [™] XTREM [™] M12, M16 and M20							
╶╢ <u>╁╌╌</u> ┠╴═╌╌╌╌╌╌╌╌┼╌╌╌╌┠╶╟╌╟╴╟╴╟╴╢╴╢							
$h_{ef} = I_{Helix}$							
	\rightarrow						
RAMSET Chemset [™] 801 Xtrem [™] / RAMSET Chemset [™] 800 Xtrem [™]							
	Annon 40						
Product description	Annex A2						
Steel elements II							

Injection mortar Injection mortar CHEMSET[™] 801 XTREM[™] 380 ml and 750 ml: Vinylester adhesive - two components Ramset CHEMSE Marking Trade name : • CHEMSETTM 801 XTREMTM for Tropical version • CHEMSETTM 800 XTREMTM for Regular version Expire date . Curing and processing time Charge code number • Identifying mark of the producer RAMSET Static mixer **ISNP** mixing nozzle **ISNE** mixing nozzle High flow mixing nozzle RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™] Annex A3 **Product description** Injection mortar

Table A1: Materials						
Part	Size	Material				
Carbon steel						
CHEMSET™	M8	DIN 1654 part 2 or 4, cold for formed steel, $A_5 \ge 15\%$, Electro or Hot dip galvanized $\ge 45 \ \mu m$ N	-			
ANCHOR STUD with nut and washer	M10 to M16	NFA 35053 cold formed steel, A Electroplated \ge 5 µm NF E25-00 or Hot dip galvanized \ge 45 µm N	09			
	M20 to M30	11SMnPb37 according to NF A Electroplated ≥ 5 μm NF E25-00 or Hot dip galvanized ≥ 45 μm N	09 NF EN ISO 1461			
CHEMSET [™] XTREM [™] with nut and washer	M12, M16, M20	Carbon steel grade 8.8, ; $A_5 = 1$ Electroplated $\ge 5 \ \mu m$ or Hot dip or Hot dip galvanized $\ge 45 \ \mu m$ N	galvanized ≥ 45 μm			
Commercial threaded rods with nut and washer	M8 to M30	Carbon steel, grade 5.8 to 10.9 A ₅ \ge 15%, Electroplated \ge 5 µm	according to EN 1993-1-8:2005 acc. to ISO 4042:2017			
Stainless steel (A 4)					
CHEMSET [™] ANCHOR STUD (SS) with nut and washer	M8 to M30	X2CrNiMo 17.12.2 according to M8 to M24: grade 80, M30: grade 70	EN 10088-3:2014			
Commercial threaded rods with nut and washerM8 to M30Stainless steel grade 70: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 acc. to EN 10088-1:2014						
High corrosion r	esistant steel (HCR)					
Commercial threaded rods with nut and washerM8 to M30Stainless steel 1.4529 / 1.4565 acc. to EN 10088-1:2014, grade 70						
Ribbed reinforcing	g bar (rebar)					
ribbed rebar	Ø8 to Ø20	EN 1992-1-1:2004, bars and de $f_{uk} = f_{tk} = k \cdot f_{yk}$, k according to N				
RAMSET Chemset	™ 801 Xtrem [™] / RAM	/ISET Chemset [™] 800 Xtrem [™]	Annex A5			
Product descript Materials	lion		AULEX AD			

Specifications of intended use

Anchorages subject to:

- Static, quasi-static loading (all steel elements)
- Seismic performance category C1 (all steel elements)
- Seismic performance category C2 (only CHEMSETTM XTREMTM)

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres of strength classes C20/25 to C50/60 acc. to EN 206: 2013
- Cracked or uncracked concrete

Temperature ranges:

Installation temperature: Temperature of base material: 0 °C to +40°C

In-service temperature:

CHEMSET[™] 801 XTREM[™] / CHEMSET[™] 800 XTREM[™] may be used in the following temperature ranges:

 Temperature range I: 	-40°C to +40°C:	max short term temperature +40°C max long term temperature +24°C
 Temperature range II: 	-40°C to +80°C:	max short term temperature +80°C max long term temperature +50°C

Use conditions (Environmental conditions):

Structures subject to dry internal conditions

(zinc coated steel, stainless steel or high corrosion resistant steel)

- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistance steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if other particular aggressive conditions exist (high corrosion resistance steel)

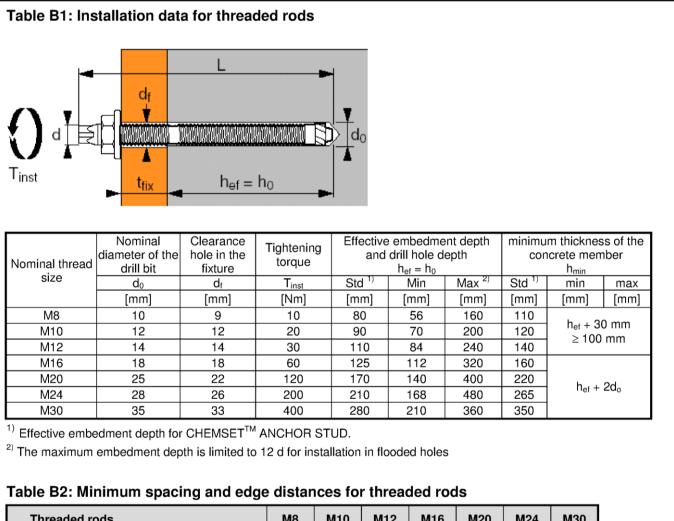
Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

RAMSET Chemset [™] 801 Xtrem [™] / RAMSET Chemset [™] 800 Xtrem [™]	
Intended used	Annex B1
Specifications	

<u>Design:</u>

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance FprEN 1992-4:2017 and Technical Report TR 055
- Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
- Fastenings in stand-off installation or with a grout layer under seismic action are not allowed.

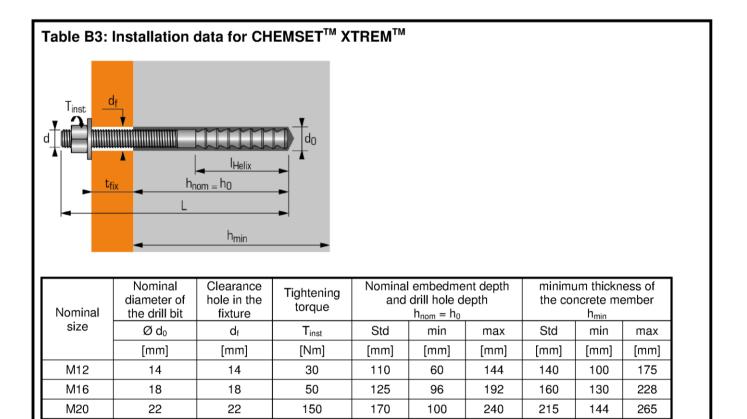
Installation:


- Installation in dry or wet concrete (use category 1) and in flooded holes (use category 2).
- All installation directions (floor, wall, overhead).
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.

RAMSET Chemset [™] 801 Xtrem [™] / RAMSET Chemset [™] 800 Xtrem [™]

Intended used

Specifications


Threaded rods			M8	M10	M12	M16	M20	M24	M30
Minimum spacing	S _{min}	[mm]	40	50	60	75	90	115	140
Minimum edge distance	C _{min}	[mm]	40	45	45	50	55	60	80

|--|

Intended use

Settings data and minimum distances

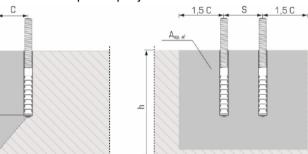


Table B4: Minimum spacing and edge distances for CHEMSET[™] XTREM[™]

For the determination of minimum spacing and minimum edge distance of anchors, the projecting area with the effective dimensions shall be higher than the required projective area:

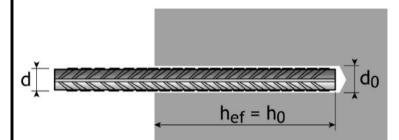
 $A_{sp,req} \leq A_{sp,ef}$

$$\begin{split} A_{sp,ef} &= h_{sp} \bullet b_{sp} \\ With \ b_{sp} &= (3 \ c + s) \ for \ s \leq 3 \ c \ or \\ b_{sp} &= 6 \ c \ for \ s > 3 \ c \\ and \ h_{sp} &= min\{(1,5 \ c + h_{nom});h\} \end{split}$$

CHEMSET [™] XTREM [™]	M12	M16	M20		
Absolute minimum edge distance and spacing	$S_{min} = C_{min}$	[mm]	55	60	120
Required area for uncracked concrete	A _{sp,req}	[mm²]	31015	44640	134400
Required area for cracked concrete	A _{sp,req}	[mm²]	27000	44640	134400

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Intended use


Settings data and minimum distances

Page 14 of European Technical Assessment ETA-18/0045 of 22 February 2018

English translation prepared by DIBt

Table B5: Installation data for reinforcement bars

Nominal size	Nominal diameter of the drill bit	Effective embe and drill h h _{ef} =	ole depth	minimum thic concrete h _r	member	
of rebar	do	min Max ¹⁾		min	max	
	[mm]	[mm]	[mm]	[mm] [mm]		
Ø8	10	56	160	b 20 mm		
Ø10	12	70	200	h _{ef} + 30 mm ≥ 100 mm		
Ø12	15	84	240	2 100 mm		
Ø16	20	112	320	- h _{ef} + 2d _o		
Ø20	25	140	400			

¹⁾ The maximum embedment depth shall be reduced to $12\emptyset$ for installation in flooded holes

Table B6: Minimum spacing and edge distances for reinforcement bars

Reinforcing bars				Ø10	Ø12	Ø16	Ø20
Minimum spacing	40	50	60	80	100		
Minimum edge distance	C _{min}	[mm]	40	45	45	50	65

RAMSET Chemset [™] 801 Xtrem [™] / RAMSET Ch	hemset [™] 800 Xtrem [™]
--	--

Intended use

Settings data and minimum distances

Table B8: Working time and curing time for RAMSET Chemset[™] 800 Xtrem[™] :

Temperature of base material	Working time	Curing time in dry concrete
0°C to 5°C	25 min	120 min
6°C to 10°C	15 min	90 min
11°C to 20°C	7 min	60 min
21°C to 30°C	4 min	45 min
31°C to 40°C	2 min	30 min

In wet concrete the curing time must be doubled

Table B7: Working time and curing time for RAMSET Chemset[™] 801 Xtrem[™]:

Temperature of base material	Working time	Curing time in dry concrete
+5°C	60 min	240 min
6°C to 10°C	40 min	180 min
11°C to 20°C	15 min	120 min
21°C to 30°C	8 min	90 min
31°C to 40°C	4 min	60 min

In wet concrete the curing time must be doubled

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Intended use

Minimum curing time

Table B9: Dimensions of the cleaning tools for threaded rods

Threaded rods				M8	M10	M12	M16	M20	M24	M30
Diameter of drill he	ble	do	[mm]	10	12	14	18	24	28	35
Air nozzle		Ø	[mm]	6	8	12	14	20	24	29
Steel brush	*********	Ø	[mm]	11	13	15	20	26	30	37

Table B10: Dimensions of the cleaning tools for CHEMSET[™] XTREM[™]

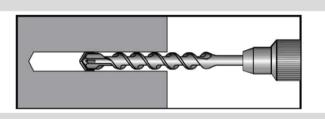
CHEMSET [™] XTREM [™]	M12	M16	M20		
Diameter of drill hole	d_0	[mm]	14	18	22
Air nozzle	Ø	[mm]	12	14	20
Steel brush	 Ø	[mm]	16	22	26

Table B11: Dimensions of the cleaning tools for reinforcing bars (rebars)

Reinforcing bars (rebars)	Ø8	Ø10	Ø12	Ø16	Ø20		
Diameter of drill hole	d_0	[mm]	10	12	15	20	25
Air nozzle	Ø	[mm]	6	8	12	14	20
Steel brush	 ≡Ø	[mm]	11	13	16	22	26

RAMSET Chemset [™] 801 Xtrem [™] / I	RAMSET Chemset [™] 800 Xtrem [™]
--	--

Intended use

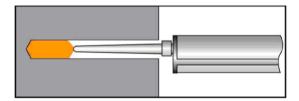

Cleaning and installation tools

Installation instruction

Bore hole drilling

1 Drill hole of diameter (d₀) and depth (h₀) with a hammer drill set in rotation-hammer mode using an appropriately carbide drill bit.

2х


2x

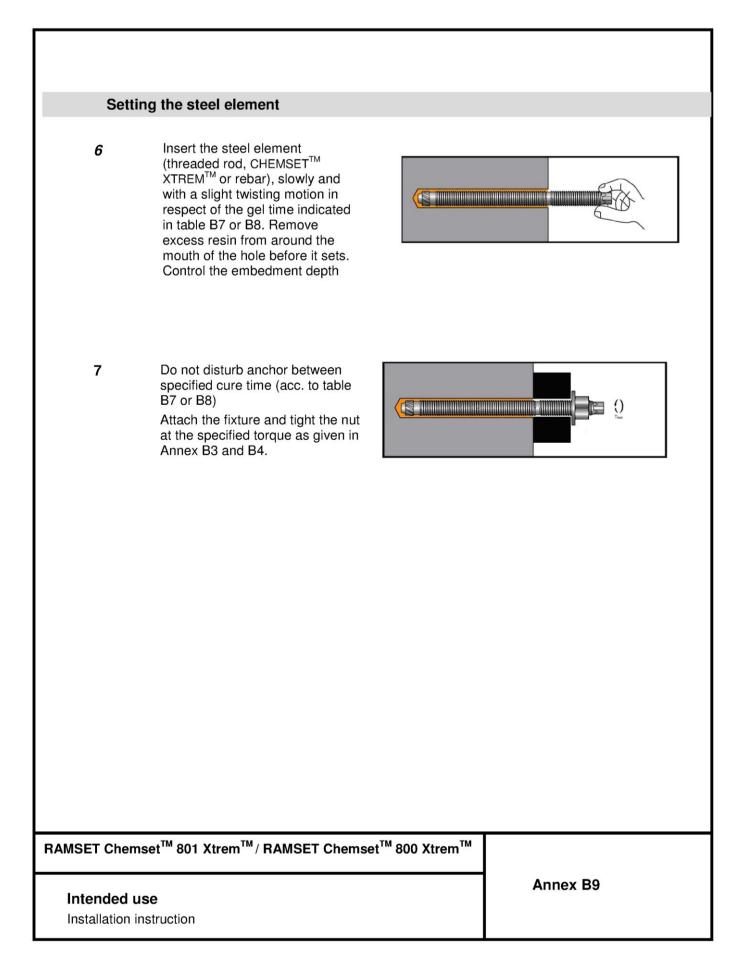
Bore hole cleaning

- 2 Using compress air cleaning (mini 6 bars), use the appropriate extension and air nozzle, starting from the bottom of the hole blow out at least 2 times and until no dust is evacuated
- **3** Using the relevant RAMSET brush and extension fitted on a drilling machine (dimensions of the brush see table B9, B10 and B11), starting from the top of the hole in rotation, move downward to the bottom of the hole then move upward to the top of the hole. Repeat this operation. Any worn brush must be replaced by a new brush($\emptyset_{brush} > \emptyset_{hole}$).
- **4** Using compress air cleaning (mini 6 bars), use the appropriate extension and air nozzle, starting from the bottom of the hole blow out at least 2 times and until no dust is evacuated.

Injection

5 Screw the mixing nozzle onto the cartridge and dispense the first part to waste until an even color is achieved for each new cartridge or mixing nozzle. Use tube extensions for holes deeper than 250 mm. Starting from the bottom of the hole fill uniformly. In order to avoid air pocket, withdraw slowly the mixing nozzle while injecting the resin. Fill the hole until 1/2 full. for hole deeper than 350mm use piston plug. For pneumatic dispenser with 380 ml cartridge, the maximum pressure is 6 bars.

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]


Intended use

Installation instruction

Page 18 of European Technical Assessment ETA-18/0045 of 22 February 2018

English translation prepared by DIBt

Table C1: Characteristic values of tension resistance for static and quasi-static action for threaded rods:

Threaded rode			Mo	M10	M12	M16	M20	MO4	M30
Threaded rods			M8	мто	MIZ	M16	M20	M24	W30
Steel failure		1							
Characteristic resistance of Chemset [™] Anchor Stud	N _{Rk,s}	[kN]	22	35	51	94	118	170	272
Partial factor	γMs,N	[-]		1	,71			1,49	
Characteristic resistance of Chemset [™] Anchor Stud (SS)	N _{Rk,s}	[kN]	26	41	59	110	172	247	281
Partial factor	γMs,N	[-]			1,8	37			2,86
Characteristic resistance for commercial standard rods	N _{Rk,s}	[kN]				$A_{s} \cdot f_{uk}$			
Partial factor	γMs,N	[-]			max {1	,4; 1,2 f _{uk}	/ f _{vk} }		
Combined pull-out and concrete co	one failure								
Nominal diameter	$d = d_{nom}$	[mm]	8	10	12	16	20	24	30
Robustness to installation	γinst	[-]				1,0			
Characteristic bond resistan	ce in uncracke	d concre	te C20/2	25 (use ca	ategory 1	: dry and	wet con	crete)	
Temperature range I: 40°C / 24°C	τ _{Rk,ucr}	[N/mm ²]	15	15	15	13	11	10	8,5
Temperature range II: 80°C / 50°C	τ _{Rk,ucr}	[N/mm ²]	14	14	14	12	10	9	8
Characteristic bond resista	nce in cracked	concrete	e C20/25	(use cat	egory 1:	dry and v	wet conc	rete)	
Temperature range I: 40°C / 24°C	$\tau_{Rk,cr}$	[N/mm²]	6,5	6,5	6,5	6,5	6,5	6,5	6,0
Temperature range II: 80°C / 50°C	τ _{Rk,cr}	[N/mm ²]	6,5	6,5	6,5	6,5	6,0	6,0	5,5
Characteristic bond resi	stance in ucrac	ked con	crete C2	20/25 (us	e categoi	ry 2: flood	ded hole:	s)	
Temperature range I: 40°C / 24°C	τ _{Rk,ucr}	[N/mm ²]	12,0	12,0	12,0	10,0	9,0	8,0	7,0
Temperature range II: 80°C / 50°C	τ _{Rk,ucr}	[N/mm ²]	11,0	11,0	11,0	9,5	8,0	7,5	6,5
Characteristic bond res	istance in crac	ked cond	rete C2	0/25 (use	categor	y 2: flood	ed holes)	
Temperature range I: 40°C / 24°C	τ _{Rk,cr}	[N/mm ²]	6,5	6,5	6,0	6,0	5,5	5,0	5,0
Temperature range II: 80°C / 50°C	$\tau_{Rk,cr}$	[N/mm ²]	6,0	6,0	6,0	5,5	5,0	5,0	4,5
Increasing factor for $\tau_{Rk,ucr}$ in $\frac{C30/3}{C40/4}$			1,04	1,04	1,04	1,04	1,12	1,12	1,17
uncracked concrete		[-]	1,07	1,07	1,07	1,07	1,23	1,23	1,32
C50/6	50		1,09	1,09	1,09	1,09	1,30	1,30	1,42
Increasing factor for $\tau_{\text{Rk,cr}}$ in cracked concrete	ψ_{c}	[-]				1,00			
Concrete cone failure									
Factor for uncracked concrete	k _{ucr,N}	[-]				11,0			
Factor for cracked concrete	k _{cr,N}	[-]				7,7			
Edge distance	C _{cr,N}	[mm]			1	,5 h _{nom}			
Spacing	S _{cr,N}	[mm]			3	3,0 h _{nom}			
Splitting									
h / h _{nom} ≥ 2,0					1,	0 h _{nom}			
Edge distance $2,0 > h / h_{nom} > 1,3$	C _{cr,sp}	[mm]			5,6 h _r	_{10m} – 2,3 h	1		
h / h _{nom} ≤ 1,3					2,	6 h _{nom}			
Spacing	S _{cr,sp}	[mm]				C _{cr,sp}			

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Performances

Characteristic resistance under tension load – threaded rods

Table C2: Characteristic values of tension resistance for static and quasi-static action for Chemset[™] Xtrem[™]:

Muticone Studs			M12	M16	M20
Steel failure					
Characteristic resistance	N _{Rk.s}	[kN]	50	89	140
Partial factor	γMs,N	[-]		1,5	
Combined Pull-out and Concrete cone				.,-	
Nominal diameter	d =d _{nom}	[mm]	12	16	20
Effective embedment depth	$h_{ef} = I_{Helix}$	[mm]	60	96	100
Robustness to installation	γinst	[-]		1,0	
Characteristic bond resistance in uncra	acked conc	rete C20/2	25 (use catego	ory 1: dry and v	wet concrete)
Temperature range I: 40°C / 24°C	τ _{Rk.ucr}	[N/mm ²]	17	17	17
Temperature range II: 80°C / 50°C	τ _{Rk.ucr}	[N/mm ²]	16	16	16
Characteristic bond resistance in cracl	ked concre	te C20/25	(use category	y 1: dry and we	t concrete)
Temperature range I: 40°C / 24°C	τ _{Rk,cr}	[N/mm ²]	17	16	14
Temperature range II: 80°C / 50°C	τ _{Rk,cr}	[N/mm ²]	16	14	13
Characteristic bond resistance in un	cracked co	oncrete C	20/25 (use cat	egory 2: floode	ed holes)
Temperature range I: 40°C / 24°C	$\tau_{Rk,ucr}$	[N/mm ²]	17	17	17
Temperature range II: 80°C / 50°C		[N/mm ²]	16	16	16
Characteristic bond resistance in c	racked con	crete C20	0/25 (use cate	gory 2: flooded	l holes)
Temperature range I: 40°C / 24°C	$\tau_{Rk,cr}$	[N/mm ²]	17	16	14
Temperature range II: 80°C / 50°C	$\tau_{Rk,cr}$	[N/mm²]	16	14	13
C30/37		[-]	1,08	1,08	1,17
Increasing factor for $\tau_{Rk,p}$ C40/50	Ψc	[-]	1,15	1,15	1,32
C50/60		[-]	1,19	1,19	1,42
Concrete cone failure	1	1 1			
Effective embedment depth	h _{ef}	[mm]		h _{nom}	
Factor for uncracked concrete	$k_{ucr,N}$	[-]		11,0	
Factor for cracked concrete	k _{cr,N}	[-]		7,7	
Edge distance	C _{cr,N}	[mm]		1,5 h _{ef}	
Spacing	S _{cr,N}	[mm]		3 h _{ef}	
Splitting					
h / h _{nom} ≥ 2,0				1,0 h _{nom}	
Edge distance $2,0 > h / h_{nom} > 1,3$	C _{cr.sp}	[mm]		5,6 h _{nom} – 2,3 h	
h / h _{nom} ≤ 1,3	0,00			2,6 h _{nom}	
Spacing		[mm]		2 c _{cr,sp}	

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Performances

Characteristic resistance under tension load - CHEMSET[™] ANCHOR STUD XTREM[™]

Reinforcing bars (rebars)			Ø8	Ø10	Ø12	Ø16	Ø20
Steel failure							
Characteristic resistance	N _{Rk,s}	[kN]			$A_s \cdot f_{uk}$		
Partial factor	γMs,N	[-]		max	{1,4; 1,2 f _{uk}	, / f _{yk} }	
Combined pull-out and concrete	cone fail	ure					
Diameter of threaded rod	$d = d_{nom}$	[mm]	8	10	12	16	20
Robustness to installation	γinst	[-]			1,0	•	
Characteristic bond resistance	in uncra	cked conci	rete C20/25	(use categ	ory 1: dry a	nd wet con	crete)
Temperature range I: 40°C / 24°C	τ _{Rk,ucr}	[N/mm ²]	13	13	13	13	13
Temperature range II: 80°C / 50°C	τ _{Rk,ucr}	[N/mm ²]	12	12	12	12	12
Characteristic bond resistand	e in crac		te C20/25 (use catego			-
Temperature range I: 40°C / 24°C	τ _{Rk,cr}	[N/mm ²]	5	5	5,5	5,5	6
Temperature range II: 80°C / 50°C	τ _{Rk,cr}	[N/mm ²]	5	5	5,5	5,5	6
Characteristic bond resista	nce in un						-
Temperature range I: 40°C / 24°C	τ _{Rk,ucr}	[N/mm ²]	10	10	10	10	10
Temperature range II: 80°C / 50°C	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,5	9,5	9,5
Characteristic bond resis						1	-
Temperature range I: 40°C / 24°C	τ _{Rk,cr}	[N/mm ²]	5	5	5	5	5,5
Temperature range II: 80°C / 50°C	$\tau_{Rk,cr}$	[N/mm ²]	5	5	5	5	5
C30/37					1,04		
Increasing factor for $\tau_{Rk,ucr}$ C40/50	ψο	[-]			1,07		
C50/60	1				1,09		
ncreasing factor for $\tau_{Rk,cr}$ in cracked concrete	Ψc	[-]			1,00		
Concrete cone failure	1						
Factor for uncracked concrete	k _{ucr,N}	[-]			11,0		
Factor for cracked concrete	k _{cr,N}	[-]			7,7		
Edge distance	C _{cr,N}	[mm]			1,5 h _{ef}		
Spacing	S _{cr,N}	[mm]			3 h _{ef}		
Splitting							
$h / h_{nom} \ge 2,0$					1,0 h _{nom}		
Edge distance $2,0 > h / h_{nom} > 1,3$	C _{cr,sp}	[mm]			5,6 h _{nom} – 2,3	3.h	
$h / h_{nom} \le 1.3$					2,6 h _{nom}		
Spacing	S _{cr,sp}	[mm]			2 c _{cr,sp}		

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Performances

Characteristic resistance under tension load - rebar

Threaded rods			M8	M10	M12	M16	M20	M24	M30
Steel failure without lever arm									
Characteristic resistance for Chemset [™] Anchor Stud	$V^0_{Rk,s}$	[kN]	11	17	25	47	59	85	136
Characteristic resistance for Chemset [™] Anchor Stud (SS)	$V^0_{\ Rk,s}$	[kN]	13	20	30	55	86	124	140
Characteristic resistance for commercial threaded rods	V ⁰ _{Rk,s}	[kN]			С),5 ● A _s ● f	uk		
Steel failure without lever arm									
Characteristic resistance for Chemset [™] Anchor Stud	M ⁰ _{Rk,s}	[Nm]	22	45	79	200	301	520	1052
Characteristic resistance for Chemset [™] Anchor Stud (SS)	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1125
Characteristic resistance for commercial threaded rods	M ⁰ _{Rk,s}	[Nm]			1	,2 ∙ W _{el} ∙	f _{uk}		
Partial factor for Chemset [™] Anchor Stud	γMs,V	[-]		1	,43			1,5	
Partial factor for Chemset TM Anchor Stud (SS)	γ̂Ms,V	[-]			1	,56	1		2,38
Partial factor for commercial threaded rods	γMs,V	[-]			max	: {1,25; f _{uk}	/ f _{yk} }		
Concrete pryout failure									
h _{ef} < 60mm						1,0			
Factor $h_{ef} \ge 60 \text{ mm}$	k ₈	[-]				2,0			
Concrete edge failure		1							
Effective length of anchor	L f	[mm]			mi	n {h _{ef} , 8 d	nom)		
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	30

Table C5: Characteristic values of shear resistance for static and quasi-static actions for CHEMSET[™] XTREM[™]

CHEMSET	™XTREM™	M12	M16	M20							
Steel failure without lever arm											
Characterist	tic resistance	V ⁰ _{Rk,s}	[kN]	34	63	98					
Steel failure without lever arm											
Characterist	tic resistance	M ⁰ _{Rk,s}	[Nm]	105	266	519					
Partial facto	r	γMs,V	[-]	1,25							
Concrete pr	ryout failure										
Factor	h _{ef} < 60mm	k ₈	r 1	1,0							
Facioi	h _{ef} ≥ 60 mm	~~8	[-]		2,0						
Concrete ec	dge failure										
Effective lengt	th of anchor	lf	[mm]	m	in {h _{nom} , 8 d _{no}	m)					
Outside diame	eter of anchor	d _{nom}	[mm]	12	16	20					

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Performances

Annex C5

Characteristic resistance under shear load – $CHEMSET^{TM}$ ANCHOR STUD XTREMTM

ble C6: Characteristic values of shear resistance for static and quasi-static actions for rebar									
Reinforcir	ıg bars (rebars)			Ø8	Ø10	Ø12	Ø16	Ø20	
Steel failure	e without lever arm				•				
Characteris	stic resistance	$V^0_{Rk,s}$	[kN]			0,5 N _{RK,s}			
Steel failure	with lever arm								
Characteris	stic resistance	M ⁰ _{Rk,s}	[Nm]	1,2 · W _{el} · f _{uk}					
Partial facto	or	γMs,V	[-]	max {1,25; f _{uk} /f _{yk} }					
Concrete pr	yout failure								
Factor	h _{ef} < 60mm	k	r 1	1,0					
Factor	h _{ef} ≥ 60 mm	— k ₈	[-]	2,0					
Concrete ec	lge failure								
Effective leng	oth of anchor	L f	[mm]	min {h _{nom} , 8 d _{nom} }					
Outside diam	eter of anchor	d _{nom}	[mm]	8	10	12	16	20	

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Performances

Characteristic resistance under shear load - rebar

Threaded rods			M8	M10	M12	M16	M20	M24	M30
Uncracked conci	rete								
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,01	0,02	0,02	0,02	0,03	0,02	0,04
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,05						
Cracked concrete	•								
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,02	0,03	0,03	0,05	0,05	0,06	0,06
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,08	0,13	0,12	0,14	0,09	0,10	0,09

Table C8: Displacement under tension loads¹⁾ for CHEMSET[™] XTREM[™]

CHEMSET [™] XTREM [™]			M12	M16	M20	
Uncracked cone	crete					
Displacement	δ _{N0}	[mm/(N/mm²)]	0,02	0,03	0,02	
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,05			
Cracked concre	ete					
Displacement	δ _{N0}	[mm/(N/mm²)]	0,03	0,05	0,05	
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,09	0,07	0,08	

Table C9: Displacement under tension loads¹⁾ for reinforcing bars

Reinforcing bars (rebars)		Ø8	Ø10	Ø12	Ø16	Ø20	
Uncracked con	crete						
Displacement	δ _{N0}	[mm/(N/mm²)]	0,01	0,01	0,07	0,06	0,3
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,05				
Cracked concre	ete						
Displacement	δ _{N0}	[mm/(N/mm²)]	0,03	0,1	0,1	0,09	0,09
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,27	0,31	0,31	0,10	0,10

 $^{1)}$ Calculation of displacement under tension load: τ_{Sd} design value of bond stress.

Displacement under short term loading = $\delta_{\text{N0}}\cdot\tau_{\text{Sd}}$ / 1,4

Displacement under long term loading = $\delta_{N^\infty}\cdot \tau_{Sd}$ / 1,4

RAMSET Chemset [™] 801 Xtrem [™] /	RAMSET Chemset [™] 800 Xtrem	тм
--	---------------------------------------	----

Performances

Displacements under static and quasi-static loading

Seismic performance category C1

The definition of seismic performance category C1 is given in FprEN 1992-4

Table C10: Characteristic tension resistance for seismic performance category C1 for threaded rods

Threaded rods			M8	M10	M12	M16	M20	M24	M30
Steel failure									
Characteristic resistance for Chemset ^{IM} Anchor Stud	N _{Rk,s,eq,C1}	[kN]	22	35	51	94	118	170	272
Partial factor	γMs,N	[-]		1	,71			1,49	
Characteristic resistance for Chemset [™] Anchor Stud (SS)	N _{Rk,s,eq,C1}	[kN]	29	46	67	125	196	282	393
Partial factor	γMs,N	[-]	1,60 1,8					1,87	
Characteristic resistance for commercial threaded rods	N _{Rk,s,eq,C1}	[kN]	$A_{s} \cdot f_{uk}$						
Partial factor	γMs,N	[-]			max {	1,4; 1,2 1	uk / fyk}		
Combined pull-out and concrete cor	ne failure								
Characteristic b	ond resista	nce (use o	categor	y 1: dry	or wet c	oncrete)			
Temperature range I: 40°C / 24°C	τ _{Rk,eq,C1}	[N/mm ²]	6,0	6,2	6,5	6,1	6,2	6,5	6,0
Temperature range II: 80°C / 50°C	τ _{Rk,eq,C1}	[N/mm ²]	6,0	6,2	6,5	6,1	5,7	6,0	5,5
Characteristi	c bond resis	stance (us	se cateç	jory 2:	flooded h	noles)			
Temperature range I: 40°C / 24°C	τ _{Rk,eq,C1}	[N/mm ²]	6,0	6,2	6,0	5,7	5,3	5,0	5,0
Temperature range II: 80°C / 50°C	τ _{Rk,eq,C1}	[N/mm ²]	5,5	5,7	6,0	5,2	4,8	5,0	4,5

Table C11: Characteristic shear resistance for seismic performance category C1 for threaded rods

Threaded rods			M8	M10	M12	M16	M20	M24	M30
Steel failure without level arm									
Characteristic resistance for Chemset [™] Anchor Stud	V _{Rk,s,eq,C1}	[kN]	8	12	18	33	41	60	82
Partial factor	γMs,V	[-]	1,43 1,5						
Characteristic resistance for Chemset [™] Anchor Stud (SS)	V _{Rk,s,eq,C1}	[kN]	9	14	21	39	60	87	84
Partial factor	γMs,V	[-]			1,50	3			2,38
Characteristic resistance for commercial threaded rods	V _{Rk,s,eq,C1}	[kN]	0,35 ● A _s ● f _{uk}						
Partial factor	γMsV	[-]	max {1,4; 1,2 f _{uk} / f _{yk} }						
Factor for clearance hole	α_{gap}	[-]				0,50			

RAMSET Chemset [™] 801 Xtrem [™]	RAMSET Chemset [™]	800 Xtrem [™]
--	------------------------------------	------------------------

Performances

Characteristic values for seismic performance category C1 - threaded rods

Seismic performance category C1

The definition of seismic performance category C1 is given in FprEN 1992-4

Table C12: Characteristic tension resistance for seismic performance category C1 for CHEMSET[™] XTREM[™]

CHEMSET [™] XTREM [™]		M12	M16	M20				
Steel failure								
Characteristic resistance	N _{Rk,s,eq,C1}	[kN]	50	89	140			
Partial factor	γMs,N	[-]		1.5				
Combined pull-out and concrete cone failure								
Characteristic bond resi	Characteristic bond resistance (use category 1: dry or wet concrete)							
Temperature range I: 40°C / 24°C	τ _{Rk,eq,C1}	[N/mm ²]	17,0	13,5	12,0			
Temperature range II: 80°C / 50°C	τ _{Rk,eq,C1}	[N/mm ²]	16,0	12,0	11,0			
Characteristic bond re	esistance	(use catego	ory 2: floode	d holes)				
Temperature range I: 40°C / 24°C	$\tau_{Rk,eq,C1}$	[N/mm ²]	17,0	13,5	12,0			
Temperature range II: 80°C / 50°C	τ _{Rk,eq,C1}	[N/mm²]	16,0	12,0	11,0			

Table C13: Characteristic shear resistance for seismic performance category C1 for CHEMSET[™] XTREM[™]

CHEMSET [™] XTREM [™]			M12	M16	M20
Steel failure without level arm					
Electroplated version					
Characteristic resistance	V _{Rk,s,eq,C1}	[kN]	23,6	44,0	68,6
Partial factor	γMs,V	[-]		1,25	
Factor for clearance hole	α_{gap}	[-]		0,50	
Hot Dip Galvanised version					
Characteristic resistance	V _{Rk,s,eq,C1}	[kN]	12	22	34,3
Partial factor	γMs,V	[-]		1,25	
Factor for clearance hole	α_{gap}	[-]		0,50	

RAMSET Chemset [™] 801 Xtrem [™] / RAMSET Chemset [™] 800 Xtrem [™]	
Performances	Annex C9
Characteristic values for seismic performance category C1 – CHEMSET TM ANCHOR STUD XTREM TM	

Seismic performance category C1

The definition of seismic performance category C1 is given in FprEN 1992-4

Table C14: Characteristic tension resistance for seismic performance category C1 for reinforcement bars (rebars)

Reinforcement bars (rebars)				Ø10	Ø12	Ø16	Ø20
Steel failure							
Characteristic resistance	N _{Rk,s,eq,C1}	[kN]	A _s · f _{uk}				
Partial factor	γMs,N	[-]	max {1,4; 1,2 f _{uk} / f _{yk} }				
Combined pull-out and concrete cone failure							
Characteristic bond resistance (use category 1: dry or wet concrete)							
Temperature range I: 40°C / 24°C	τ _{Rk,eq,C1}	[N/mm ²]	3,5	3,8	5,5	5,5	6,0
Temperature range II: 80°C / 50°C	τ _{Rk,eq,C1}	[N/mm ²]	3,5	3,8	5,5	5,5	6,0
Characteristic bon	d resistance	(use categ	ory 2: fl	ooded h	ioles)		
Temperature range I: 40°C / 24°C	τ _{Rk,eq,C1}	[N/mm ²]	3,5	3,8	5,0	5,0	5,5
Temperature range II: 80°C / 50°C	τ _{Rk,eq,C1}	[N/mm ²]	3,5	3,8	5,0	5,0	5,5

Table C15: Characteristic shear resistance for seismic performance category C1 for reinforcement bars (rebars)

Reinforcement bars (rebars)			Ø8	Ø10	Ø12	Ø16	Ø20
Steel failure							
Characteristic resistance	$V_{Rk,s,eq,C1}$	[kN]	0,35 • As • f _{uk}				
Partial factor	γMs,V	[-]	max {1,25; f _{uk} / f _{yk} }				
Factor for clearance hole	$lpha_{\sf gap}$	[-]	0,50				

RAMSET Chemset [™] 801 Xtrem [™] / RAMSET Chemset [™] 800 Xtrem [™]	
Performances	Annex C10

Characteristic values for seismic performance category C1 - rebar

Seismic performance category C2 The definition of seismic performance category C2 is given in FprEN 1992-4 Table C16: Characteristic tension resistance for seismic performance category C2 for CHEMSET[™] XTREM[™] CHEMSET[™] XTREM[™] M12 M16 M20 Steel failure Characteristic resistance [kN] 50 89 140 N_{Rk,s,eq,C2} Partial factor [-] 1.5 γMs,N **Combined Pull-out and Concrete cone failure** Characteristic bond resistance (use category 1: dry or wet concrete) Temperature range I: 40°C / 24°C $\tau_{\text{Rk,eq,C2}}$ [N/mm²] 7,1 9,6 6.8 Temperature range II: 80°C / 50°C τ_{Rk,eq,C2} [N/mm²] 6,6 8,9 6,3 Characteristic bond resistance (use category 2: flooded holes) Temperature range I: 40°C / 24°C [N/mm²] 7,1 9,6 6,8 τ_{Rk,eq,C2} Temperature range II: 80°C / 50°C [N/mm²] 6.6 8.9 6,3 TRk.eq.C2

Table C17: Characteristic shear resistance for seismic performance category C2 for CHEMSET[™] XTREM[™]

CHEMSET [™] XTREM [™]			M12	M16	M20	
Steel failure without level arm						
Electroplated version						
Characteristic resistance	V _{Rk,s,eq,C2}	[kN]	23,6	44,0	68,6	
Partial factor	γMs,V	[-]	1,25			
Factor for clearance hole	α_{gap}	[-]	0,50			
Hot Dip Galvanised version						
Characteristic resistance	V _{Rk,s,eq,C2}	[kN]	12	22	34,3	
Partial factor	γMs,∨	[-]	1,25			
Factor for clearance hole	α_{gap}	[-]	0,50			

Table C18: Displacements under seismic tension loading, seismic performance category C2 for CHEMSET[™] XTREM[™]

CHEMSET [™] XTREM [™]			M12	M16	M20
Displacement DLS	$\delta_{N,eq}$ (DLS)	[mm]	0,72	0,98	1,15
Displacement ULS	$\delta_{N,eq}$ (ULS)	[mm]	1,65	2,07	3,20

Table C19: Displacements under seismic shear loading, seismic performance category C2 for CHEMSET[™] XTREM[™]

CHEMSET [™] XTREM [™]			M12	M16	M20
Displacement DLS	$\delta_{V,eq}$ (DLS)	[mm]	2,01	2,63	2,99
Displacement ULS	$\delta_{V,eq}$ (ULS)	[mm]	3,57	4,67	4,53

RAMSET Chemset[™] 801 Xtrem[™] / RAMSET Chemset[™] 800 Xtrem[™]

Performances

Characteristic values for seismic performance category C2–CHEMSET $^{\rm TM}$ XTREM $^{\rm TM}$