

190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 18/0675 of 06/06/2021

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Chemset[™] Reo502[™] EF Plus Trade name of the construction product

Epcon[™] C6 EF Plus Epcon[™] G5 PRO

Product family to which the construction

product belongs

Product area code: 33

Bonded injection type anchor for use in

cracked and uncracked concrete

Manufacturer Ramsetreid

A Division of ITW Australia Pty Ltd

1 Ramset Drive, Chirnside Park. Vic 3116

Australia

Manufacturing plant Ramsetreid Plant

This European Technical Assessment

contains

19 pages including 16 Annexes which form an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330499-01-0601

Bonded fasteners for use in concrete

This version replaces ETA 18/0675 issued on 16/01/2020

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The Chemset[™] Reo502[™] EF Plus, Epcon[™] C6 EF Plus, Epcon[™] G5 PRO with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3, C 4
Displacements under short-term and long-term loading	See Annex C 5
Characteristic resistance and displacement for seismic performance categories C1 and C2	See Annex C 6, C 7, C 8

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

-

Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

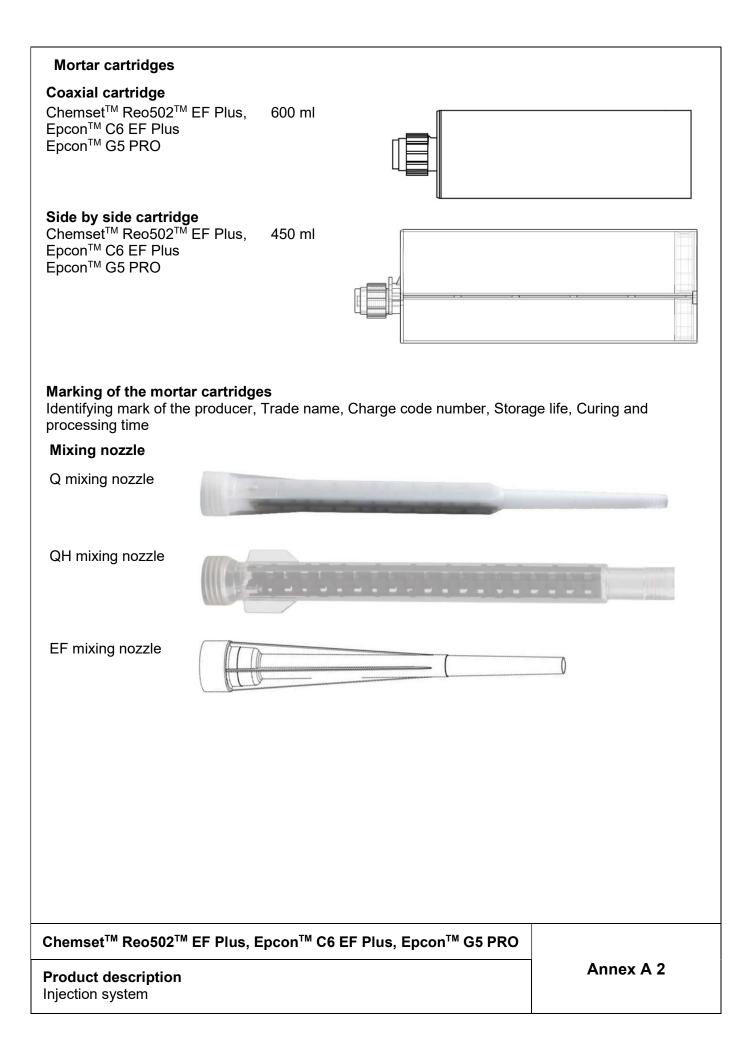
Issued in Prague on 06.06.2021

Ву

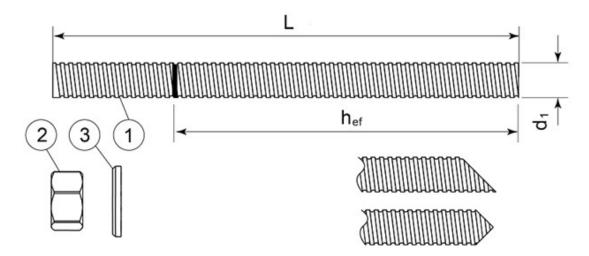
Ing. Mária Schaan

Head of the Technical Assessment Body

Czech Republic


O Grand Assessment of the Company o

Page 3 of 19 ETA 18/0675 issued on 06/06/2021 and replacing ETA 18/0675 issued on 16/01/2020


The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Threaded rod Reinforcing bar

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Product description Installed conditions	Annex A 1

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Dort	Designation	Motorial								
Part	Designation FN IOC 40	Material								
	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or									
	Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811									
Steel,										
1	Anchor rod	Steel, EN 10087 or EN 10263								
-		Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1								
2	Hexagon nut	According to threaded rod, EN 20898-2								
	EN ISO 4032									
	Washer									
3	EN ISO 887, EN ISO 7089,	According to threaded rod								
	EN ISO 7093 or EN ISO 7094									
Stain	ess steel									
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506								
2	Hexagon nut	According to threaded rod								
	EN ISO 4032	According to threaded rod								
	Washer									
3	EN ISO 887, EN ISO 7089,	According to threaded rod								
	EN ISO 7093 or EN ISO 7094									
High	corrosion resistant steel									
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1								
2	Hexagon nut	According to threaded rod								
	EN ISO 4032	According to threaded rod								
	Washer									
3	EN ISO 887, EN ISO 7089,	According to threaded rod								
	EN ISO 7093 or EN ISO 7094									

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Product description Threaded rod and materials	Annex A 3

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form	Bars and de	-coiled rods			
Class	В	С			
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 t	o 600		
Minimum value of $k = (f_t/f_y)_k$	≥ 1,08 ≥ 1,15 < 1,35				
Characteristic strain at maximum for	Characteristic strain at maximum force ε _{uk} (%)				
Bendability		Bend/Rebend test			
Maximum deviation from nominal	Nominal bar size (mm)				
mass (individual bar) (%)	≤ 8	±6	5,0		
	> 8	±4	, ,5		
Bond: Minimum relative rib area,	Nominal bar size (mm)				
$f_{R,min}$	8 to 12	0,0)40		
	> 12	0,0)56		

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Product description Rebars and materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
 - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
 - rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

Base materials

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

Temperature range:

• T3: -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

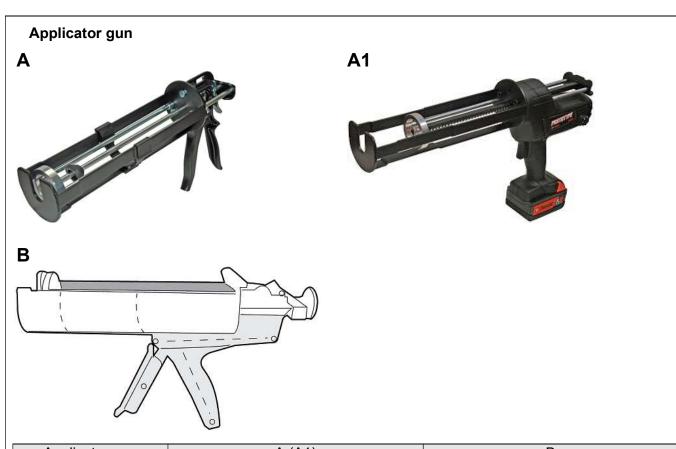
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

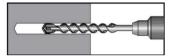

Installation:

- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

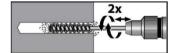
• D3 – downward and horizontal and upwards (e.g. overhead) installation

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Intended use Specifications	Annex B 1


Applicator gun	A (A1)	В
Cartridge	Coaxial	Side by side
Cartridge	600 ml	450 ml

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Intended use Applicator guns Cleaning brush	Annex B 2

Installation procedure


Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Air, Hole Cleaning Brush, good quality Dispensing Tool – either manual or power operated, Chemical cartridge with mixing nozzle and extension tube, if needed.

1. Drill hole of diameter (d₀) and depth (h₀) with a hammer drill set in rotation hammer mode using an appropriately carbide drill bit.

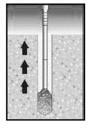
2. Using compress air cleaning (mini 6 bars), use the appropriate extension and air nozzle, starting from the bottom of the hole blow out at least 2 times and until no dust is evacuated.

3. Using the relevant RAMSET brush and extension fitted on a drilling machine (dimensions of the brush see table B1 and B2), starting from the top of the hole in rotation, move downward to the bottom of the hole then move upward to the top of the hole. Repeat this operation. Any worn brush must be replaced by a new brush $(\mathcal{O}_{brush} > \mathcal{O}_{hole})$.

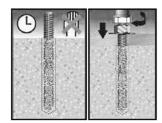
4. Repeat Step 2

7. If water is present, brush sides of hole

- **5.** Repeat Step 3
- 6. Repeat Step 2


8. Follow any special opening instructions on the cartridge label and attach mixing nozzle.

9. Load cartridge into applicator.


10. Dispense initial 1 or 2 trigger pulls to waste to ensure correct mixing.

11. Insert end of nozzle to bottom of hole and squeeze trigger to dispense adhesive, withdrawing nozzle as hole fills.

12. Insert fixing with a twisting motion to release trapped air.

13. Do not disturb fixing until curing time has elapsed. Attach fixture and tighten nut to recommended torque.

Chemset[™] Reo502[™] EF Plus, Epcon[™] C6 EF Plus, Epcon[™] G5 PRO

Intended use Installation procedure Annex B 3

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	10	12	14	18	22	26	30	35
Cleaning brush			S11HF	S14HF	S14/15HF	S22HF	S24HF	S31HF	S31HF	S38HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	160	180	200
Embedment depth for hef,min	h_{ef}	[mm]	60	60	70	80	90	96	108	120
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	480	540	600
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	C _{min}	[mm]	40	40	40	40	50	50	50	60
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	50	60
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm ≥ 1	100 mm	h _{ef} + 2d ₀				

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	12	14	16	20	25	32	40
Cleaning brush			S12/13HF	S14/15HF	S18HF	S22HF	S27HF	S35HF	S43HF
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	180	200
Embedment depth for hef,min	h _{ef}	[mm]	60	60	70	80	90	100	128
Embedment depth for hef,max	hef	[mm]	160	200	240	320	400	500	640
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	70
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	70
Minimum thickness of member	h _{min}	[mm]	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$						

Table B3: Minimum curing time

Table Do. Willimmann caring th	110							
Base Material Temperature	Cartridge	T Work	T Load					
[°C]	Temperature [°C]	[mins]	[hrs]					
+5		300	24					
+5°C to +10	Minimum +10	150	24					
+10°C to +15	+10°C to +15	40	18					
+15°C to +20	+15°C to +20	25	12					
+20°C to +25	+20°C to +25	18	8					
+25°C to +30	+25°C to +30	12	6					
+30°C to +35	+30°C to +35	8	4					
+35°C to +40	+35°C to +40 +35°C to +40							
	Ensure cartridge is ≥ 10°	С						

T Work is typical gel time at highest base material temperature in the range.

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Intended use Installation parameters	Annex B 4
Curing time	

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Steel failure – Characteristic resis	stance									
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]		-		2	2,00			
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]				1	,50			•
Steel grade 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1	,50			•
Steel grade 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]				1	,33			•
Stainless steel grade A2-70, A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		-		1	,87			
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1	,60			
Stainless steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1	,50			
Stainless steel grade 1.4565	$N_{Rk,s}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]		-		1	,87			
Combined pullout and concrete c	one failure i	n con	crete C	20/25 fo	r a woı	king li	fe of 50	years a	nd 100	years
Size				M8	M10 I	V112 N	/116 M2	0 M2	4 M27	M30
Characteristic bond resistance in	uncracked (concr	ete	•	•	•	•	•		'
Temperature T3: -40°C to +70°C	τ _{Rk} .		l/mm²]	17	15	15	12 12	2 12	11	9,5
Dry, wet concrete, flooded hole			-	· ·						
Installation safety factor	γ	inst	[-]				1,0			
Characteristic bond resistance in	cracked co	ncrete)							
Temperature T3: -40°C to +70°C	τR	k,cr [N	l/mm²]	10 10 10 9,5 9 9					6	6
Dry, wet concrete, flooded hole		, , ,								
Installation safety factor	γ	inst	[-]				1,0			
Factor for influence of T1 24	°C / 40°C						0,74			
sustained load for a	\mathbf{w}^0	sus	[-]							
working life 50 years T3: 50	°C / 70°C '						0,72			
	C25/30						1,02			
	C30/37						1,04			
Factor for concrete	C35/45	اما	[-]				1,06			
	C40/30		. 1				1,07			
	C45/55						1,08			
	C50/60						1,09			
Concrete cone failure		1								
Factor for concrete cone failure for uncracked concrete	Kucr,		.,				11			
Factor for concrete cone failure for cracked concrete	K _{cr,1}	 [-]		7,7						
Edge distance	C _{cr,} N	ı [r	nm]				1,5h _{ef}			
Splitting failure	5.,.						,			
Size				M8	M10 I	V112 N	/116 M2	0 M2	4 M27	M30
Edge distance	C _{Cr,s}	n [mm]				2 • h _{ef}	····	·	1
Spacing Spacing	S _{cr,s}	-	mm]				2 • C _{cr,sp}			
- Pacing	J CI,8	יאן [_ J ul,sp			

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Performances	Annex C 1
Design according to EN 1992-4	
Characteristic resistance for tension loads - threaded rod	

Table C2: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Steel failure - Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

Combined pullout and co	oncrete cone failu	ure in	concrete (C20/25 f	or a wo	rking li	fe of 50	years	and 100	years		
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Characteristic bond resis	stance in uncracl	ked co	ncrete									
Temperature T3: -40°C to	+70°C	τ _{Rk,ucr}	[N/mm ²]	13	13	13	12	12	12	8		
Dry and wet concrete												
Installation safety factor		γinst	[-]				1,0					
Flooded hole												
Installation safety factor		γinst	[-]				1,2					
Characteristic bond resis	stance in cracked	d conc	rete									
Temperature T3: -40°C to	+70°C	τ _{Rk,cr}	[N/mm ²]	8	11	10	10	10	8,5	6,5		
Dry and wet concrete							•					
Installation safety factor		γinst	[-]				1,0					
Flooded hole												
Installation safety factor		γinst	[-]				1,2					
Factor for influence of sustained load for a	T1: 24°C / 40°C	Ψ^0 sus	[-]				0,74					
working life 50 years	T3: 50°C / 70°C	Ψ sus	ſ J	0,72								
	C25/30 C30/37						1,02 1,04					
Factor for concrete	C35/45		Ψο [-]				1,06					
racion for concrete	C40/50	Ψс			1,07							
	C45/55 C50/60			1,08								
	C50/60						1,09					

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	r 1	11
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7,7
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

Splitting failure										
Size	Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32			
Edge distance	C _{cr,sp}	[mm]	2 • h _{ef}							
Spacing	Scr,sp	[mm]	2 • c _{cr,sp}							

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Performances	Annex C 2
Design according to EN 1992-4	7 .
Characteristic resistance for tension loads - rebar	

Table C3: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm											
Size			M8	M10	M12	M16	M20	M24	M27	M30	
Steel grade 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Partial safety factor	γMs	[-]				1,	,67				
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Partial safety factor	γMs	[-]	1,25								
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Partial safety factor	γMs	[-]				1,	,25				
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281	
Partial safety factor	γMs	[-]				1	,5				
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]				1,	,56				
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Partial safety factor	γMs	[-]				1,	,33				
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]				1,	,25				
Stainless steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196	
Partial safety factor	γMs	[-]	1,56								
Characteristic resistance of group of faste	ners										
Ductility factor $k_7 = 1,0$ for steel with rupt		ion A ₅ >	- 8%								

Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	$M^{o}_{Rk,s}$	[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γMs	[-]				1,	,67			
Steel grade 5.8	M^o_Rk,s	[N.m]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs	[-]				1,	,25			
Steel grade 8.8	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1,	,25			
Steel grade 10.9	$M^{o}_{Rk,s}$	[N.m]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γMs	[-]				1,	,50			
Stainless steel grade A2-70, A4-70	M^o_Rk,s	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1,	,56			
Stainless steel grade A4-80	$M^{o}_{Rk,s}$	[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1,	,33			
Stainless steel grade 1.4529	$M^{o}_{Rk,s}$	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1,	,25			
Stainless steel grade 1.4565	M^o_Rk,s	[N.m]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1.	,56			
Concrete pryout failure										
Factor for resistance to pry-out failure	k ₈	[-]			•		2		•	•

Concrete edge failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Outside diameter of fastener d _n	om	[mm]	8	10	12	16	20	24	27	30
Effective length of fastener	l f	[mm]	min (h _{ef} , 8 d _{nom})							

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Performances Design according to EN 1992-4	Annex C 3
Characteristic resistance for shear loads - threaded rod	

Table C4: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	V _{Rk,s} [l	kN]	14	22	31	55	86	135	221
Partial safety factor	γMs	[-]				1,5			
Characteristic resistance of group of fasteners									
Ductility factor	$k_7 = 1,0$ for steel with	h rup	ture elor	gation A	5 > 8 %				

Steel failure with lever arm										
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Rebar BSt 500 S	Mº _{Rk,s} [N.m]	33	65	112	265	518	1013	2122		
Partial safety factor	γMs [-]				1,5					
Concrete pryout failure										
Factor for resistance to pry-out failure	k ₈ [-]				2					

Concrete edge failure			_					
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener d _n	om [mm]	8	10	12	16	20	25	32
Effective length of fastener	tener ℓ_{f} [mm] min (h _{ef} , 8 d _{nom})							

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Performances Design according to EN 1992-4 Characteristic resistance for shear loads - rebar	Annex C 4

Table C5: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30		
Tensio	Tension load										
Uncracked concrete											
δνο	[mm/kN]	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,01		
δ _{N∞}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,01	0,01		
Crack	ed concre	te									
δνο	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02	0,02		
δ _{N∞}	[mm/kN]	0,35	0,21	0,14	0,12	0,08	0,07	0,07	0,07		
Shear	load										
δνο	[mm/kN]	0,71	0,45	0,31	0,17	0,11	0,07	0,06	0,05		
δ∨∞	[mm/kN]	1,06	0,67	0,46	0,25	0,16	0,11	0,08	0,07		

Table C6: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32			
Tensi	Tension load										
Uncra	Uncracked concrete										
δ_{N0}	[mm/kN]	0,04	0,03	0,02	0,01	0,01	0,01	0,01			
δ _{N∞}	[mm/kN]	0,08	0,05	0,04	0,02	0,02	0,01	0,01			
Crack	Cracked concrete										
δ_{N0}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02			
δ _{N∞}	[mm/kN]	0,35	0,21	0,17	0,11	0,08	0,07	0,06			
Shear	load										
δ_{V0}	[mm/kN]	0,38	0,24	0,17	0,10	0,06	0,04	0,02			
δ∨∞	[mm/kN]	0,56	0,36	0,25	0,14	0,09	0,06	0,04			

Chemset™ Reo502™ EF Plus, Epcon™ C6 EF Plus, Epcon™ G5 PRO

Performances
Displacement for threaded rod and rebar

Annex C 5

Table C7: Seismic performance category C1 of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30
Tension load				1.		•		•		
Steel failure										
Characteristic resistance grade 4.6	N _{Rk,s,eq,C1}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				2,	00			
Characteristic resistance grade 5.8	N _{Rk,s,eq,C1}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]				1,	50			
Characteristic resistance grade 8.8	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]		•		1,	50			
Characteristic resistance grade 10.9	$N_{Rk,s,eq,C1}$	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]		•		1,3	33			
Characteristic resistance A2-70, A4-70	$N_{Rk,s,eq,C1}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,8	87			
Characteristic resistance A4-80	$N_{Rk,s,eq,C1}$	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,0	60			
Characteristic resistance 1.4529	$N_{Rk,s,eq,C1}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	50			
Characteristic resistance 1.4565	$N_{Rk,s,eq,C1}$	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				٠,	87			
Combined pullout and concrete cone fail	ure in concr	ete C20/25	for a	workin	g life o	f 50 ye		d 100	years	
Temperature T1 and T3: -40°C to +70°C	τRk,p,eq,C1	[N/mm ²]	9,4	8,5	10,0	8,7	7,4	7,7	5,7	4,9
Installation safety factor	γinst	[-]				1,	,0			
Shear load										
Steel failure without lever arm										
Characteristic resistance grade 4.6	V _{Rk,s,eq,C1}	[kN]	5	9	13	20	32	28	37	45
Partial safety factor	γMs	[-]					67			
Characteristic resistance grade 5.8	V _{Rk,s,eq,C1}	[kN]	7	11	16	26	40	35	46	56
Partial safety factor	γMs	[-]				1,:	25			
Characteristic resistance grade 8.8	V _{Rk,s,eq,C1}	[kN]	11	17	25	41	64	56	73	90
Partial safety factor	γMs	[-]				1,:	25			
0										
Characteristic resistance grade 10.9	VRk.s.ea.C1	[kN]	14	22	32	51	80	71	92	112
Characteristic resistance grade 10.9 Partial safety factor	V _{Rk,s,eq,C1}	[kN] [-]	14	22	32		<u>80 </u>	71	92	112
	γMs		14	15	22			71 49	92	79
Partial safety factor		[-]			-	1,: 36	50			
Partial safety factor Characteristic resistance A2-70 , A4-70	γMs V _{Rk,s,eq,C1}	[-] [kN]			-	1,: 36	50 56			
Partial safety factor Characteristic resistance A2-70 , A4-70 Partial safety factor	γMs VRk,s,eq,C1 γMs	[-] [kN] [-]	10	15	22	1,36 1,41	50 56 56	49	64	79
Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80	γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1}	[-] [kN] [-] [kN]	10	15	22	1,4 36 1,4 41 1,7	50 56 56 64 33 56	49	64	79
Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-]	10	15	22	1,4 36 1,4 41 1,7	50 56 56 64 33	49	73	79 90
Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-]	10	15	22	1,36 1,36 41 1,36 1,36	50 56 56 64 33 56 25	49	73	79 90
Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor	$\begin{array}{c} \gamma_{Ms} \\ V_{Rk,s,eq,C1} \\ \gamma_{Ms} \end{array}$	[-] [kN] [-] [kN] [-] [kN] [-]	10 11 10 10	15 17 15 15	22 25 22 22	1,41 36 41 1,36 1,36 36	50 56 56 64 33 56 25 56	49 56 49	64 73 64 64	79 90 79 79
Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s,}	$\begin{array}{c} \gamma_{Ms} \\ V_{Rk,s,eq,C1} \\ \\ v_{Rk,s,eq,C$	[-] [kN] [-] [kN] [-] [kN] [-] e C7 shall	10 11 10 10 be multiple multip	15 17 15 15 tiplied b	22 25 22 22	1,41 36 41 1,36 1,36 36	50 56 56 64 33 56 25 56	49 56 49	64 73 64 64	79 90 79 79
Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s,}	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] e C7 shall mmercial s	10 11 10 10 be multandard	15 17 15 15 15 tiplied k	22 25 22 22 22 29 follow	1,41 36 1,36 1,36 1,36 1,40 36	50 56 56 64 33 56 25 56 56 duction	49 56 49 49	64 73 64 64 for hot	79 90 79 79
Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s,}	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] e C7 shall	10 11 10 10 be multiple multip	15 17 15 15 tiplied b	22 25 22 22	1,41 36 41 1,36 1,36 36	50 56 56 64 33 56 25 56 56 ductior	49 56 49	64 73 64 64	79 90 79 79

The anchor shall be used with minimum rupture elongation after fracture A_5 equal to 19%.

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Performances Seismic performance category C1 of threaded rod	Annex C 6

Size			Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Tension load										
Steel failure										
Rebar BSt 500 S	$N_{Rk,s,eq,C1}$	[kN]	43	62	111	173	270	442		
Partial safety factor	γMs	[-]	1,4							
Characteristic resistance to pull-out for a working life of 50 years and 100 years										
Temperature T3: -40°C to +70°C	τ _{Rk,p,eq,C1}	[N/mm ²]	9,4	9,8	9,5	8,8	8,0	5,3		
Dry and wet concrete										
Installation safety factor	γinst	[-]	1,0							
Flooded hole										
Installation safety factor	γinst	[-]			1	,2				

Shear load								
Steel failure without lever arm								
Rebar BSt 500 S	$V_{Rk,s,eq,C1}$	[kN]	16	23	41	69	67	111
Partial safety factor	γMs	[-]			1	,5		
Factor for annular gap	αgap	[-]			0	,5		

Chemset[™] Reo502[™] EF Plus, Epcon[™] C6 EF Plus, Epcon[™] G5 PRO

Performances
Seismic performance category C1 of rebar

Annex C 7

Table C9: Seismic performance category C2 of threaded rod

Size			M12	M16	M20
Tension load					
Steel failure					
Characteristic resistance grade 4.6	N _{Rk,s,eq,C2}	[kN]	34	63	98
Partial safety factor	γMs	[-]		2,00	
Characteristic resistance grade 5.8	$N_{Rk,s,eq,C2}$	[kN]	42	79	123
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance grade 8.8	$N_{Rk,s,eq,C2}$	[kN]	67	126	196
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance grade 10.9	$N_{Rk,s,eq,C2}$	[kN]	84	157	245
Partial safety factor	γMs	[-]		1,33	
Characteristic resistance A2-70, A4-70	$N_{Rk,s,eq,C2}$	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	
Characteristic resistance A4-80	N _{Rk,s,eq,C2}	[kN]	67	126	196
Partial safety factor	γMs	[-]		1,60	
Characteristic resistance 1.4529	$N_{Rk,s,eq,C2}$	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance 1.4565	$N_{Rk,s,eq,C2}$	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	
Characteristic resistance to pull-out for	a working life	of 50 year	rs and 100 years		
Temperature T3: -40°C to +70°C	τRk,p,eq,C2		3,5	4,0	4,5
Installation safety factor	γinst	[-]	·	1,0	,
Shear load					
Steel failure without lever arm					
Characteristic resistance grade 4.6	V-,	[LAI]	13	18	28
Partial safety factor	V _{Rk,s,eq,C2}	[kN] [-]	13	1.67	20
Characteristic resistance grade 5.8	γMs		16	22	35
Partial safety factor	V _{Rk,s,eq,C2}	[kN] [-]	10	1,25	30
Characteristic resistance grade 8.8	γMs V _{Rk,s,eq,C2}	[kN]	25	36	
Partial safety factor			25		56
irailiai saiciv iaului	201				56
	γMs	[-]	22	1,25	
Characteristic resistance grade 10.9	V _{Rk,s,eq,C2}	[kN]	32	1,25 45	70
Characteristic resistance grade 10.9 Partial safety factor	V _{Rk,s,eq,C2}	[kN] [-]		1,25 45 1,50	70
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70	V _{Rk,s,eq,C2} γ _{Ms} V _{Rk,s,eq,C2}	[kN] [-] [kN]	32	1,25 45 1,50 31	
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor	VRk,s,eq,C2 γMs VRk,s,eq,C2 γMs	[kN] [-] [kN] [-]	22	1,25 45 1,50 31 1,56	70
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80	VRk,s,eq,C2 γMs VRk,s,eq,C2 γMs VRk,s,eq,C2	[kN] [-] [kN] [-] [kN]		1,25 45 1,50 31 1,56 36	70
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor	VRk,s,eq,C2 γMs VRk,s,eq,C2 γMs VRk,s,eq,C2 γMs	[kN] [-] [kN] [-] [kN]	22 25	1,25 45 1,50 31 1,56 36 1,33	70 49 56
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance A4-80 Characteristic resistance 1.4529	VRk,s,eq,C2 YMs VRk,s,eq,C2 YMs VRk,s,eq,C2 YMs VRk,s,eq,C2 YMs VRk,s,eq,C2	[kN] [-] [kN] [-] [kN] [-] [kN]	22	1,25 45 1,50 31 1,56 36 1,33	70
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor	VRk,s,eq,C2 γMs VRk,s,eq,C2 γMs VRk,s,eq,C2 γMs VRk,s,eq,C2 γMs VRk,s,eq,C2 γMs	[kN] [-] [kN] [-] [kN] [-] [kN]	22 25 22	1,25 45 1,50 31 1,56 36 1,33 31 1,25	70 49 56 49
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565	VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2	[kN] [-] [kN] [-] [kN] [-] [kN]	22 25	1,25 45 1,50 31 1,56 36 1,33 31 1,25	70 49 56
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor	VRk,s,eq,C2 YMs VRk,s,eq,C2 YMs VRk,s,eq,C2 YMs VRk,s,eq,C2 YMs VRk,s,eq,C2 YMs VRk,s,eq,C2 YMs	[kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	22 25 22 22	1,25 45 1,50 31 1,56 36 1,33 31 1,25 31	70 49 56 49
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s,r}	VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2	[kN] [-] [kN] [-] [kN] [-] [kN] [-] C9 shall be	22 25 22 22 e multiplied by foll	1,25 45 1,50 31 1,56 36 1,33 31 1,25 31	70 49 56 49
Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s,r}	VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRb,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs VRk,s,eq,C2 yMs	[kN] [-] [kN] [-] [kN] [-] [kN] [-] C9 shall be	22 25 22 22 e multiplied by foll	1,25 45 1,50 31 1,56 36 1,33 31 1,25 31	70 49 56 49

Table C10: Displacement under tensile and shear load - seismic category C2 of threaded rod

Size		M12	M16	M20
$\delta_{N,eq(DLS)}$	[mm]	0,20	0,40	0,77
$\delta_{N,eq(ULS)}$	[mm]	0,76	0,74	1,68
$\delta_{V,eq(DLS)}$	[mm]	5,29	4,12	4,94
δv,eq(ULS)	[mm]	10,20	9,05	10,99

The anchor shall be used with minimum rupture elongation after fracture A_{5} equal to 19%.

Chemset [™] Reo502 [™] EF Plus, Epcon [™] C6 EF Plus, Epcon [™] G5 PRO	
Performances Seismic performance category C2 of threaded rod	Annex C 8