

for Construction Prague
Prosecká 811/76a
190 00 Prague
Czech Republic
eota@tzus.cz





# European Technical Assessment

ETA 18/0675 of 08/07/2024

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product ChemSet™ Reo502™ Plus

ChemSet<sup>™</sup> Epcon<sup>™</sup> C6 Plus ChemSet<sup>™</sup> Epcon<sup>™</sup> G5 PRO

Product family to which the construction

product belongs

Product area code: 33

Bonded injection type anchor for use in

cracked and uncracked concrete

**Manufacturer** Ramsetreid

A Division of ITW Australia Pty Ltd

1 Ramset Drive, Chirnside Park. Vic 3116

Australia

Manufacturing plant Ramsetreid Plant 3

This European Technical Assessment

contains

23 pages including 20 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation

(EU) No 305/2011, on the basis of

EAD 330499-01-0601

Bonded fasteners for use in concrete

This version replaces

ETA 18/0675 issued on 06/06/2021

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

### 1. Technical description of the product

The ChemSet<sup>™</sup> Reo502<sup>™</sup> Plus, ChemSet<sup>™</sup> Epcon<sup>™</sup> C6 Plus, ChemSet<sup>™</sup> Epcon<sup>™</sup> G5 PRO with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

### 2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

# 3. Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                | Performance           |
|-----------------------------------------------------------------------------------------|-----------------------|
| Characteristic resistance to tension load (static and quasi-static loading)             | See Annex C 1 to C 5  |
| Characteristic resistance to shear load (static and quasi-static loading)               | See Annex C 6 to C 7  |
| Displacements under short-term and long-term loading                                    | See Annex C 8         |
| Characteristic resistance and displacement for seismic performance categories C1 and C2 | See Annex C 9 to C 11 |

### 3.2 Hygiene, health and environment (BWR 3)

No performance determined.

#### 3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

# 4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission<sup>1</sup> the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

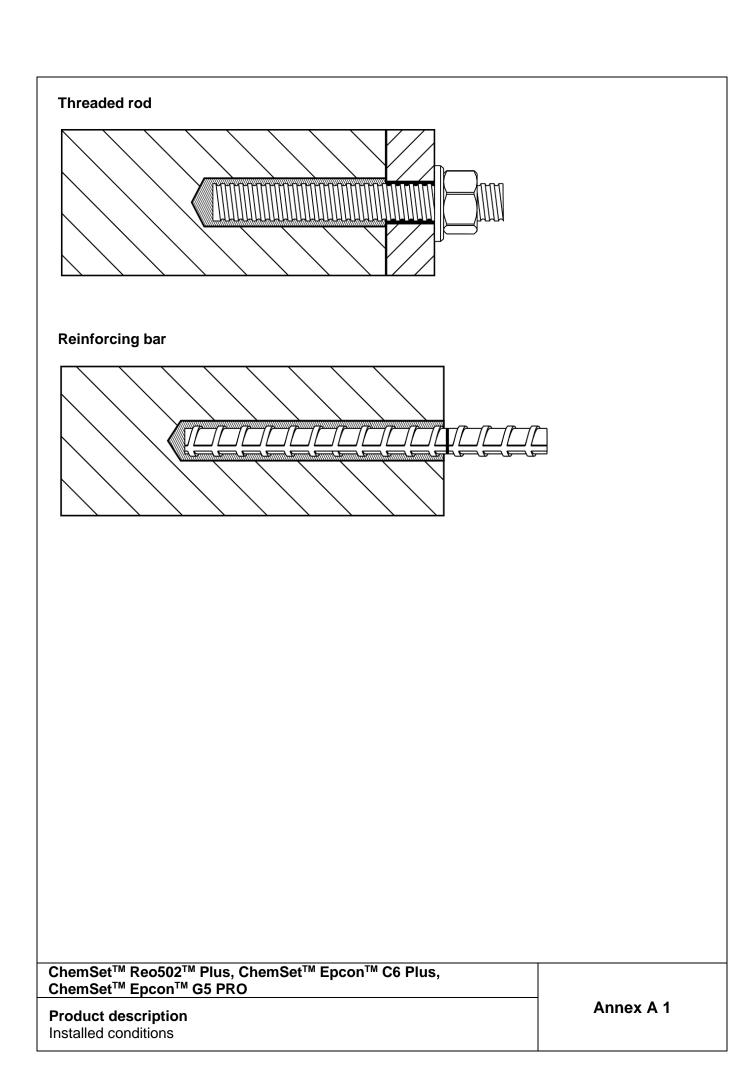
| Product           | Intended use                               | Level or class | System |
|-------------------|--------------------------------------------|----------------|--------|
| Metal anchors for | For fixing and/or supporting to concrete,  |                |        |
| use in concrete   | structural elements (which contributes to  | -              | 1      |
|                   | the stability of the works) or heavy units |                |        |

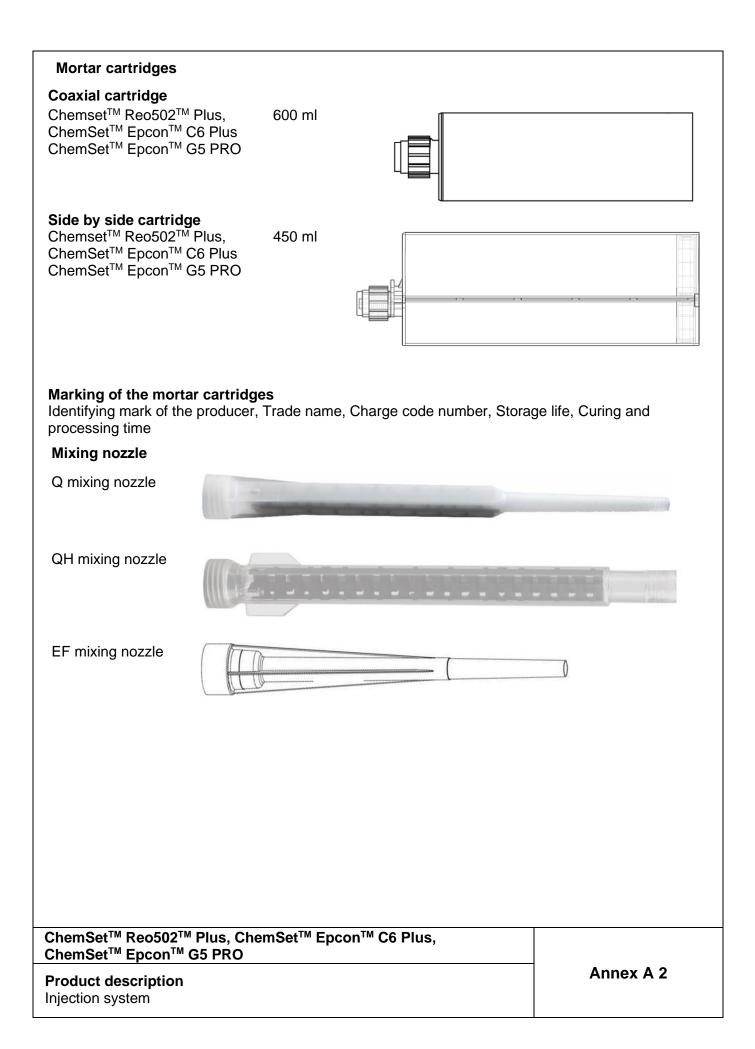
Official Journal of the European Communities L 254 of 08.10.1996

-

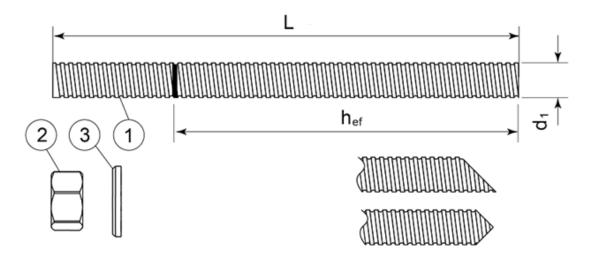
# 5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.


Issued in Prague on 08.07.2024


By

**Ing. Jiří Studnička, Ph.D.** Head of the Technical Assessment Body


The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Page 3 of 23 ETA 18/0675 issued on 08/07/2024 and replacing ETA 18/0675 issued on 06/06/2021





# Threaded rod M8, M10, M12, M16, M20, M24, M27, M30



Standard commercial threaded rod with marked embedment depth

| Part                                                                                                                          | Designation                                                      | Material                                                                        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or<br>Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or |                                                                  |                                                                                 |  |  |  |  |  |  |
| Steel,                                                                                                                        | el, zinc diffusion coating ≥ 15 μm acc. to EN 13811              |                                                                                 |  |  |  |  |  |  |
| 1                                                                                                                             | Anchor rod                                                       | Steel, EN 10087 or EN 10263<br>Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1 |  |  |  |  |  |  |
| 2                                                                                                                             | Hexagon nut<br>EN ISO 4032                                       | According to threaded rod, EN 20898-2                                           |  |  |  |  |  |  |
| 3                                                                                                                             | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094 | According to threaded rod                                                       |  |  |  |  |  |  |
| Stainl                                                                                                                        | ess steel                                                        |                                                                                 |  |  |  |  |  |  |
| 1                                                                                                                             | Anchor rod                                                       | Material: A2-70, A4-70, A4-80, EN ISO 3506                                      |  |  |  |  |  |  |
| 2                                                                                                                             | Hexagon nut<br>EN ISO 4032                                       | According to threaded rod                                                       |  |  |  |  |  |  |
| 3                                                                                                                             | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094 | According to threaded rod                                                       |  |  |  |  |  |  |
| High                                                                                                                          | corrosion resistant steel                                        |                                                                                 |  |  |  |  |  |  |
| 1                                                                                                                             | Anchor rod                                                       | Material: 1.4529, 1.4565, EN 10088-1                                            |  |  |  |  |  |  |
| 2                                                                                                                             | Hexagon nut<br>EN ISO 4032                                       | According to threaded rod                                                       |  |  |  |  |  |  |
| 3                                                                                                                             | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094 | According to threaded rod                                                       |  |  |  |  |  |  |

<sup>\*</sup>Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Product description Threaded rod and materials                                                                                                    | Annex A 3 |

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32



# Standard commercial reinforcing bar with marked embedment depth

| Product form Bars and de-coiled         |                                                           |                  |       |  |
|-----------------------------------------|-----------------------------------------------------------|------------------|-------|--|
| Class                                   | В                                                         | С                |       |  |
| Characteristic yield strength fyk or fo | <sub>0,2k</sub> (MPa)                                     | 400 t            | o 600 |  |
| Minimum value of $k = (f_t/f_y)_k$      |                                                           |                  |       |  |
| Characteristic strain at maximum for    | naracteristic strain at maximum force ε <sub>uk</sub> (%) |                  |       |  |
| Bendability                             |                                                           | Bend/Rebend test |       |  |
| Maximum deviation from nominal          | Nominal bar size (mm)                                     |                  |       |  |
| mass (individual bar) (%)               | ≤ 8                                                       | ±6               | 6,0   |  |
|                                         | ±4                                                        | <b>1</b> ,5      |       |  |
| Bond: Minimum relative rib area,        | Nominal bar size (mm)                                     |                  |       |  |
| $f_{R,min}$                             | 0,0                                                       | )40              |       |  |
|                                         | > 12                                                      | 0,0              | )56   |  |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Product description Rebars and materials                                                                                                          | Annex A 4 |

#### Specifications of intended use

#### Anchorages subject to:

- Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
  - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
  - rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

#### **Base materials**

- · Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

#### **Temperature range:**

• -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

#### **Use conditions (Environmental conditions)**

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

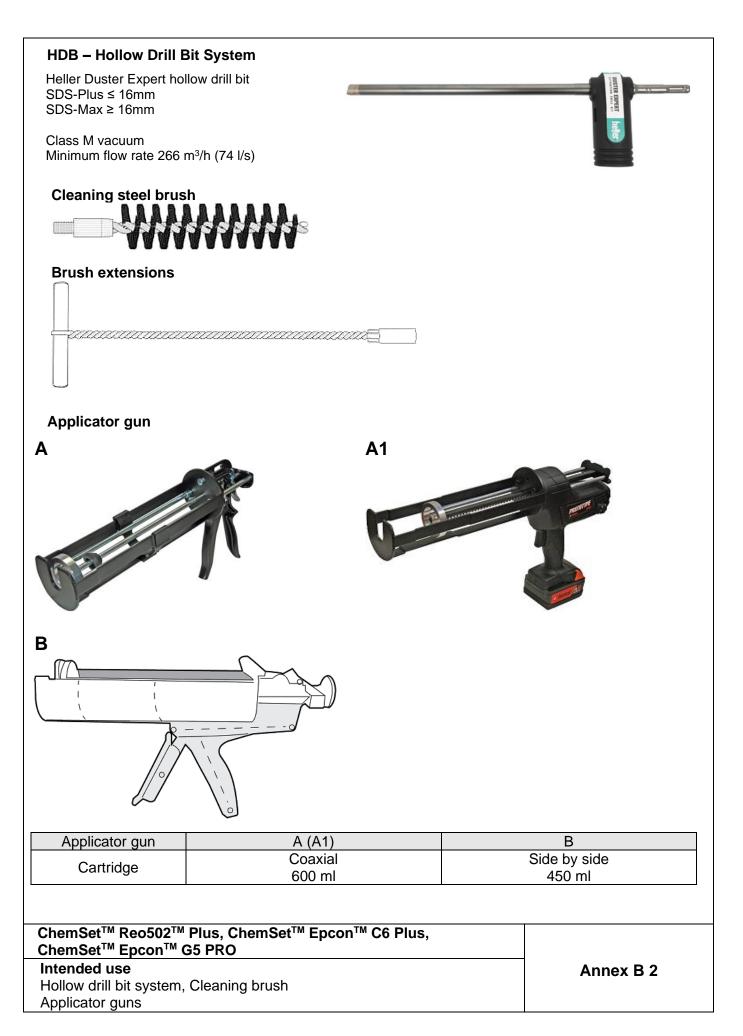
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

#### Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.


#### Installation:

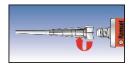
- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

#### Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Intended use<br>Specifications                                                                                                                    | Annex B 1 |

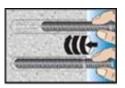


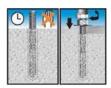

#### SOLID SUBSTRATE INSTALLATION METHOD








- 1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.
- 2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). Perform the blowing operation twice.
- 3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.
- 4. Repeat step 2 (blowing operation x2)
- 5. Repeat step 3 (brushing operation x2)
- 6. Repeat step 2 (blowing operation x2)

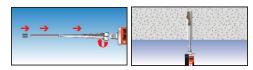






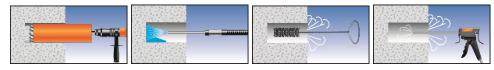

- 7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and fit for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.
- 8. Extrude some resin to waste until an even coloured mixture is achieved. The cartridge is now ready for use.
- 9. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ¾ full and remove the nozzle from the hole






- 10. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.
- 11. Clean any excess resin from around the mouth of the hole.
- 12. Refer to the working and loading times within the tables to determine the appropriate cure time.
- 13. Position the ¬fixture and tighten the anchor to the appropriate installation torque. Do not overtorque the anchor, as this could adversely affect its performance.

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Intended use Installation procedure                                                                                                               | Annex B 3 |


#### DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".



- 2a. Attach the correct diameter and length extension tube to the nozzle. Select the correct diameter resin stopper for the application, then push and screw the extension tube into the resin stopper. This is held in place with a coarse internal thread. The resin stopper is a reusable accessory.
- 3a. Push the resin stopper and extension tube to the back of the drill hole.
- 4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded.
- 5a. Continue from step 10 under "solid substrate installation method"

#### **DIAMOND CORE DRILLING**



- 1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.
- 2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.
- 3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.
- 4b. Repeat step 2b (flushing operation x2).
- 5b. Repeat step 3b (brushing operation x2).
- 6b. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.
- 7b. Continue from step 7 under "solid substrate installation method".

#### **DUSTLESS DRILLING**



- 1b. Using the speci¬fied hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the speci¬fied diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifi¬cations are met and that the vacuum is turned on.
- 2b. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.
- 3b. Continue from step 7 under "solid substrate installation method".

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Intended use<br>Installation procedure                                                                                                            | Annex B 4 |

Table B1: Installation parameters of threaded rod

| Size                        |                       |      | M8                 | M10                                                   | M12                | M16                | M20                | M24                | M27                | M30                |
|-----------------------------|-----------------------|------|--------------------|-------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Nominal drill hole diameter | $ \emptyset d_0 $     | [mm] | 10                 | 12                                                    | 14                 | 18                 | 22                 | 26                 | 30                 | 35                 |
| Cleaning brush              |                       |      | S11HF              | S14HF                                                 | S14/15HF           | S22HF              | S24HF              | S31HF              | S31HF              | S38HF              |
| Torque moment               | max T <sub>fixt</sub> | [Nm] | 10                 | 20                                                    | 40                 | 80                 | 120                | 160                | 180                | 200                |
| Embedment depth for hef,min | h <sub>ef</sub>       | [mm] | 60                 | 60                                                    | 70                 | 80                 | 90                 | 96                 | 108                | 120                |
| Embedment depth for hef,max | h <sub>ef</sub>       | [mm] | 160                | 200                                                   | 240                | 320                | 400                | 480                | 540                | 600                |
| Depth of drill hole         | $h_0$                 | [mm] | h <sub>ef</sub> +5 | h <sub>ef</sub> +5                                    | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 |
| Minimum edge distance       | C <sub>min</sub>      | [mm] | 40                 | 40                                                    | 40                 | 40                 | 50                 | 50                 | 50                 | 60                 |
| Minimum spacing             | Smin                  | [mm] | 40                 | 40                                                    | 40                 | 40                 | 50                 | 50                 | 50                 | 60                 |
| Minimum thickness of member | h <sub>min</sub>      | [mm] | h <sub>ef</sub> +  | ef + 30 mm ≥ 100 mm h <sub>ef</sub> + 2d <sub>0</sub> |                    |                    |                    |                    |                    |                    |

**Table B2**: Installation parameters of rebar

| Size                        |                       |      | Ø8                  | Ø10                | Ø12                | Ø16                               | Ø20                | Ø25                | Ø32                |
|-----------------------------|-----------------------|------|---------------------|--------------------|--------------------|-----------------------------------|--------------------|--------------------|--------------------|
| Nominal drill hole diameter | $ \emptyset d_0 $     | [mm] | 12                  | 14                 | 16                 | 20                                | 25                 | 32                 | 40                 |
| Cleaning brush              |                       |      | S12/13HF            | S14/15HF           | S18HF              | S22HF                             | S27HF              | S35HF              | S43HF              |
| Torque moment               | max T <sub>fixt</sub> | [Nm] | 10                  | 20                 | 40                 | 80                                | 120                | 180                | 200                |
| Embedment depth for hef,min | h <sub>ef</sub>       | [mm] | 60                  | 60                 | 70                 | 80                                | 90                 | 100                | 128                |
| Embedment depth for hef,max | h <sub>ef</sub>       | [mm] | 160                 | 200                | 240                | 320                               | 400                | 500                | 640                |
| Depth of drill hole         | $h_0$                 | [mm] | h <sub>ef</sub> +5  | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5                | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 | h <sub>ef</sub> +5 |
| Minimum edge distance       | Cmin                  | [mm] | 40                  | 40                 | 40                 | 40                                | 50                 | 50                 | 70                 |
| Minimum spacing             | Smin                  | [mm] | 40                  | 40                 | 40                 | 40                                | 50                 | 50                 | 70                 |
| Minimum thickness of member | h <sub>min</sub>      | [mm] | h <sub>ef</sub> + 3 | 30 mm ≥ 100        | ) mm               | h <sub>ef</sub> + 2d <sub>0</sub> |                    |                    |                    |

Table B3: Minimum curing time

| Table Bo. William daming th | 110                       |        |        |
|-----------------------------|---------------------------|--------|--------|
| Base Material Temperature   | Cartridge                 | T Work | T Load |
| [°C]                        | Temperature [°C]          | [mins] | [hrs]  |
| +5                          |                           | 300    | 24     |
| +5°C to +10                 | Minimum +10               | 150    | 24     |
| +10°C to +15                | +10°C to +15              | 40     | 18     |
| +15°C to +20                | +15°C to +20              | 25     | 12     |
| +20°C to +25                | +20°C to +25              | 18     | 8      |
| +25°C to +30                | +25°C to +30              | 12     | 6      |
| +30°C to +35                | +30°C to +35              | 8      | 4      |
| +35°C to +40                | +35°C to +40              | 6      | 2      |
|                             | Ensure cartridge is ≥ 10° | C      |        |

T Work is typical gel time at highest base material temperature in the range.

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Intended use                                                                                                                                   | Annex B 5 |
| Installation parameters                                                                                                                        |           |
| Curing time                                                                                                                                    |           |

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

**Table C1:** Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of threaded rod

| Steel failure - Characteristic resista | nce        |      |      |     |     |     |     |     |     |     |
|----------------------------------------|------------|------|------|-----|-----|-----|-----|-----|-----|-----|
| Size                                   |            |      | M8   | M10 | M12 | M16 | M20 | M24 | M27 | M30 |
| Steel grade 4.6                        | $N_{Rk,s}$ | [kN] | 15   | 23  | 34  | 63  | 98  | 141 | 184 | 224 |
| Partial safety factor                  | γMs        | [-]  |      |     |     | 2,  | 00  |     |     |     |
| Steel grade 5.8                        | $N_{Rk,s}$ | [kN] | 18   | 29  | 42  | 79  | 123 | 177 | 230 | 281 |
| Partial safety factor                  | γMs        | [-]  |      |     |     | 1,  | 50  |     |     |     |
| Steel grade 8.8                        | $N_{Rk,s}$ | [kN] | 29   | 46  | 67  | 126 | 196 | 282 | 367 | 449 |
| Partial safety factor                  | γMs        | [-]  | 1,50 |     |     |     |     |     |     |     |
| Steel grade 10.9                       | $N_{Rk,s}$ | [kN] | 37   | 58  | 84  | 157 | 245 | 353 | 459 | 561 |
| Partial safety factor                  | γMs        | [-]  |      |     |     | 1,  | 33  |     |     |     |
| Stainless steel grade A2-70, A4-70     | $N_{Rk,s}$ | [kN] | 26   | 41  | 59  | 110 | 172 | 247 | 321 | 393 |
| Partial safety factor                  | γMs        | [-]  |      |     |     | 1,  | 87  |     |     |     |
| Stainless steel grade A4-80            | $N_{Rk,s}$ | [kN] | 29   | 46  | 67  | 126 | 196 | 282 | 367 | 449 |
| Partial safety factor                  | γMs        | [-]  |      |     |     | 1,  | 60  |     |     |     |
| Stainless steel grade 1.4529           | $N_{Rk,s}$ | [kN] | 26   | 41  | 59  | 110 | 172 | 247 | 321 | 393 |
| Partial safety factor                  | γMs        | [-]  | 1,50 |     |     |     |     |     |     |     |
| Stainless steel grade 1.4565           | $N_{Rk,s}$ | [kN] | 26   | 41  | 59  | 110 | 172 | 247 | 321 | 393 |
| Partial safety factor                  | γMs        | [-]  |      |     |     | 1,  | 87  |     |     |     |

**Table C2:** Design method EN 1992-4
Steel failure - Characteristic values of resistance to tension load of rebar

| Steel failure – Characteristic resistance |            |      |    |     |     |     |     |     |     |
|-------------------------------------------|------------|------|----|-----|-----|-----|-----|-----|-----|
| Size                                      |            |      | Ø8 | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |
| Rebar BSt 500 S                           | $N_{Rk,s}$ | [kN] | 28 | 43  | 62  | 111 | 173 | 270 | 442 |
| Partial safety factor                     | γMs        | [-]  |    |     |     | 1,4 |     |     |     |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Steel failure characteristic resistance                                                                                              | Annex C 1 |

**Table C3:** Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

| Combined pullout and concre                                                                     | te cone fa                                                        | ailure i              | in con | cret    | e C20/   | 25     |         |         |        |        |       |     |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|--------|---------|----------|--------|---------|---------|--------|--------|-------|-----|
| Hammer drilling, Dustless dr                                                                    | illing                                                            |                       |        |         |          |        |         |         |        |        |       |     |
| Size                                                                                            |                                                                   |                       |        |         | M8       | M10    | M12     | M16     | M20    | M24    | M27   | M30 |
| Characteristic bond resistan                                                                    | ce in unc                                                         | racke                 | d con  | cre     | te for a | worki  | ng life | of 50 y | ears a | nd 100 | years |     |
| Dry and wet concrete, Flooded I                                                                 | nole                                                              | τRk,ucr               | [N/mr  | $m^2$ ] | 17,0     | 15,0   | 15,0    | 12,0    | 12,0   | 12,0   | 11,0  | 9,5 |
| Installation safety factor for                                                                  | Installation safety factor for Dry and Wet concrete, Flooded hole |                       |        |         |          |        |         |         |        |        |       |     |
| Dry, wet concrete                                                                               |                                                                   | γinst                 | [-]    |         |          |        |         | 1       | ,0     |        |       |     |
| Hammer drilling – Flooded hole                                                                  | е                                                                 | γinst                 | [-]    |         |          |        |         | 1       | ,0     |        |       |     |
| Dustless drilling – Flooded hole                                                                | е                                                                 | γinst                 | [-]    |         |          |        |         | 1       | ,2     |        |       |     |
| Characteristic bond resistance in cracked concrete for a working life of 50 years and 100 years |                                                                   |                       |        |         |          |        |         |         |        |        |       |     |
| Dry and wet concrete, Flooded I                                                                 |                                                                   |                       |        |         | 10,0     | 10,0   | 10,0    | 9,5     | 9,0    | 9,0    | 6,0   | 6,0 |
| Installation safety factor for                                                                  | Dry and V                                                         | Vet co                | ncret  | e, F    | looded   | d hole |         |         |        |        |       |     |
| Dry, wet concrete                                                                               |                                                                   | γinst                 | [-]    |         |          |        |         | 1       | ,0     |        |       |     |
| Hammer drilling – Flooded hole                                                                  |                                                                   | γinst                 | [-]    |         |          |        |         | 1       | ,0     |        |       |     |
| Dustless drilling – Flooded hole                                                                | е                                                                 | γinst                 | [-]    |         |          |        |         | 1       | ,2     |        |       |     |
| Factor for influence of sustained for a working life 50 years                                   | load                                                              | $\psi^0_{\text{sus}}$ | [-]    |         | 0,72     |        |         |         |        |        |       |     |
|                                                                                                 | C25/30                                                            |                       |        |         |          |        |         | 1,      | 02     |        |       |     |
|                                                                                                 | C30/37                                                            |                       |        |         |          |        |         | 1,      | 04     |        |       |     |
| Factor for concrete                                                                             | C35/45                                                            |                       | r 1    |         | 1,06     |        |         |         |        |        |       |     |
| actor for concrete                                                                              | C40/50                                                            | ψс                    | [-]    |         | 1,07     |        |         |         |        |        |       |     |
| C45/55                                                                                          |                                                                   |                       |        |         | 1,08     |        |         |         |        |        |       |     |
|                                                                                                 | C50/60                                                            |                       |        |         |          |        |         | 1,      | 09     |        |       |     |

| Concrete cone failure                                   |                    |      |                     |
|---------------------------------------------------------|--------------------|------|---------------------|
| Factor for concrete cone failure for uncracked concrete | k <sub>ucr,N</sub> | r 1  | 11                  |
| Factor for concrete cone failure for cracked concrete   | k <sub>cr,N</sub>  | [-]  | 7,7                 |
| Edge distance                                           | Ccr,N              | [mm] | 1,5 h <sub>ef</sub> |

| Splitting failure |        |      |                      |     |     |     |                 |     |     |     |
|-------------------|--------|------|----------------------|-----|-----|-----|-----------------|-----|-----|-----|
| Size              |        |      | M8                   | M10 | M12 | M16 | M20             | M24 | M27 | M30 |
| Edge distance     | Ccr,sp | [mm] |                      |     |     | 2   | h <sub>ef</sub> |     |     |     |
| Spacing           | Scr,sp | [mm] | 2 C <sub>cr,sp</sub> |     |     |     |                 |     |     |     |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances                                                                                                                                   | Annex C 2 |
| Hammer drilling, Dustless drilling                                                                                                             |           |
| Characteristic resistance for tension loads - threaded rod                                                                                     |           |

**Table C4:** Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

| Combined pullout and concre                                                                     | to cono fa                                               | iluro i            | n concret            | ~ C20/2                                      | 5                                             |      |      |      |      |     |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|----------------------|----------------------------------------------|-----------------------------------------------|------|------|------|------|-----|
| Hammer drilling, Dustless d                                                                     |                                                          | ilule i            | II COIICIEI          | <del>C</del> C20/2.                          | <u>,                                     </u> |      |      |      |      |     |
| Size                                                                                            | illing                                                   |                    |                      | Ø8                                           | Ø10                                           | Ø12  | Ø16  | Ø20  | Ø25  | Ø32 |
| Characteristic bond resistan                                                                    | ce in und                                                | racke              | ed concre            | ete for a                                    | workin                                        |      |      |      |      |     |
| Dry and wet concrete, Flooded                                                                   |                                                          |                    | [N/mm <sup>2</sup> ] |                                              | 13,0                                          | 13,0 | 12,0 | 12,0 | 12,0 | 8,0 |
| Installation safety factor for Dry and Wet concrete, Flooded hole                               |                                                          |                    |                      |                                              |                                               |      |      |      | -    |     |
| Hammer drilling - Dry, wet con                                                                  |                                                          | γinst              | [-]                  |                                              |                                               |      | 1,0  |      |      |     |
| Dustless drilling - Dry, wet con                                                                | crete                                                    | γinst              | [-]                  |                                              |                                               |      | 1,2  |      |      |     |
| Flooded hole                                                                                    |                                                          | γinst              | [-]                  |                                              |                                               |      | 1,2  |      |      |     |
| Characteristic bond resistance in cracked concrete for a working life of 50 years and 100 years |                                                          |                    |                      |                                              |                                               |      |      |      |      |     |
| Dry and wet concrete, Flooded                                                                   | hole                                                     | τ <sub>Rk,cr</sub> | [N/mm <sup>2</sup> ] | 8,0                                          | 11,0                                          | 10,0 | 10,0 | 9,0  | 8,5  | 6,5 |
| Installation safety factor for                                                                  | Dry and \                                                | Wet c              | oncrete,             | Flooded                                      | hole                                          |      |      |      |      |     |
| Hammer drilling - Dry, wet con                                                                  | crete                                                    | γinst              | [-]                  |                                              |                                               |      | 1,0  |      |      |     |
| Dustless drilling - Dry, wet con                                                                | crete                                                    | γinst              | [-]                  |                                              |                                               |      | 1,2  |      |      |     |
| Flooded hole                                                                                    |                                                          | γinst              | [-]                  |                                              |                                               |      | 1,2  |      |      |     |
| Factor for influence of sustaine for a working life 50 years                                    | ed load                                                  | $\psi^0$ sus       | [-]                  | 0,72                                         |                                               |      |      |      |      |     |
| Factor for concrete                                                                             | C25/30<br>C30/37<br>C35/45<br>C40/50<br>C45/55<br>C50/60 | Ψ¢                 | [-]                  | 1,02<br>1,04<br>1,06<br>1,07<br>1,08<br>1,09 |                                               |      |      |      |      |     |

| Concrete cone failure            |                   |      |                     |
|----------------------------------|-------------------|------|---------------------|
| Factor for concrete cone failure | le                |      | 11                  |
| for uncracked concrete           | Kucr,N            | r 1  |                     |
| Factor for concrete cone failure | le                | [-]  | 7.7                 |
| for cracked concrete             | K <sub>cr,N</sub> |      | 7,7                 |
| Edge distance                    | Ccr,N             | [mm] | 1,5 h <sub>ef</sub> |

| Splitting failure |        |      |    |     |     |                      |     |     |     |
|-------------------|--------|------|----|-----|-----|----------------------|-----|-----|-----|
| Size              |        |      | Ø8 | Ø10 | Ø12 | Ø16                  | Ø20 | Ø25 | Ø32 |
| Edge distance     | Ccr,sp | [mm] |    |     |     | 2 h <sub>ef</sub>    |     |     |     |
| Spacing           | Scr,sp | [mm] |    |     |     | 2 C <sub>cr,sp</sub> |     |     |     |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances                                                                                                                                   | Annex C 3 |
| Hammer drilling, Dustless drilling                                                                                                             |           |
| Characteristic resistance for tension loads - rebar                                                                                            |           |

**Table C5:** Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

| Combined pullout and concrete cone f                                               | ailure i     | in concre            | te C20/  | 25     |         |         |        |        |       |     |
|------------------------------------------------------------------------------------|--------------|----------------------|----------|--------|---------|---------|--------|--------|-------|-----|
| Diamond core drilling                                                              |              |                      |          |        |         |         |        |        |       |     |
| Size                                                                               |              |                      | M8       | M10    | M12     | M16     | M20    | M24    | M27   | M30 |
| Characteristic bond resistance in und                                              | cracke       | d concre             | te for a | worki  | ng life | of 50 y | ears a | nd 100 | years | -   |
| Dry and wet concrete, Flooded hole                                                 |              | [N/mm <sup>2</sup> ] |          | 15,0   | 15,0    | 12,0    | 12,0   | 12,0   | 11,0  | 9,5 |
| Installation safety factor for Dry and Wet concrete, Flooded hole                  |              |                      |          |        |         |         |        |        |       |     |
| Dry, wet concrete                                                                  | γinst        | [-]                  |          |        |         |         | ,0     |        |       |     |
| Flooded hole                                                                       | γinst        | [-]                  |          |        |         |         | ,2     |        |       |     |
| Characteristic bond resistance in cracked concrete for a working life of 50 years  |              |                      |          |        |         |         |        |        |       |     |
| Dry and wet concrete, Flooded hole                                                 | τRk,cr       | [N/mm <sup>2</sup> ] | 10,0     | 10,0   | 10,0    | 9,5     | 8,5    | 9,0    | 6,0   | 6,0 |
| Characteristic bond resistance in cracked concrete for a working life of 100 years |              |                      |          |        |         |         |        |        |       |     |
| Dry and wet concrete, Flooded hole                                                 | τRk,cr       | [N/mm <sup>2</sup> ] | 8,5      | 9,0    | 9,0     | 8,5     | 8,0    | 8,0    | 6,0   | 5,5 |
| Installation safety factor for Dry and                                             | Wet co       | ncrete, F            | loode    | d hole |         |         |        |        |       |     |
| Dry, wet concrete                                                                  | γinst        | [-]                  |          |        |         | 1       | ,0     |        |       |     |
| Flooded hole                                                                       | γinst        | [-]                  |          |        |         | 1       | ,2     |        |       |     |
| Factor for influence of sustained load for                                         | $\Psi^0$ sus | [-]                  |          |        |         | 0       | 76     |        |       |     |
| a working life 50 years                                                            | Ψ'sus        | [-]                  |          |        |         |         |        |        |       |     |
| C25/30                                                                             |              |                      |          |        |         | -       | 02     |        |       |     |
| C30/37                                                                             |              |                      | 1,04     |        |         |         |        |        |       |     |
| Factor for concrete C35/45                                                         | Ψс           | [-]                  |          |        |         |         | 06     |        |       |     |
| C40/50                                                                             | <b>4</b> c   | []                   |          |        |         | -       | 07     |        |       |     |
| C45/55                                                                             |              |                      |          |        |         | -       | 80     |        |       |     |
| C50/60                                                                             |              |                      |          |        |         | 1,      | 09     |        |       |     |

| Concrete cone failure                                   |                    |      |                     |
|---------------------------------------------------------|--------------------|------|---------------------|
| Factor for concrete cone failure for uncracked concrete | k <sub>ucr,N</sub> | r 1  | 11                  |
| Factor for concrete cone failure for cracked concrete   | k <sub>cr,N</sub>  | [-]  | 7,7                 |
| Edge distance                                           | C <sub>cr,N</sub>  | [mm] | 1,5 h <sub>ef</sub> |

| Splitting failure |                    |      |                      |     |     |     |     |     |     |     |
|-------------------|--------------------|------|----------------------|-----|-----|-----|-----|-----|-----|-----|
| Size              |                    |      | M8                   | M10 | M12 | M16 | M20 | M24 | M27 | M30 |
| Edge distance     | C <sub>cr,sp</sub> | [mm] | 2 h <sub>ef</sub>    |     |     |     |     |     |     |     |
| Spacing           | S <sub>cr,sp</sub> | [mm] | 2 C <sub>cr,sp</sub> |     |     |     |     |     |     |     |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances                                                                                                                                   | Annex C 4 |
| Diamond core drilling                                                                                                                          |           |
| Characteristic resistance for tension loads - threaded rod                                                                                     |           |

**Table C6:** Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

| Combined pullout and conci                                                         | rete cone fa                         | ilure i             | n concret            | e C20/2                      | 5      |           |              |        |         |     |
|------------------------------------------------------------------------------------|--------------------------------------|---------------------|----------------------|------------------------------|--------|-----------|--------------|--------|---------|-----|
| Diamond core drilling                                                              | 0.5 0011010                          |                     | 50                   | O COLOTE                     | •      |           |              |        |         |     |
| Size                                                                               |                                      |                     |                      | Ø8                           | Ø10    | Ø12       | Ø16          | Ø20    | Ø25     | Ø32 |
| Characteristic bond resista                                                        | ance in und                          | racke               | ed concre            | ete for a                    | workin | g life of | 50 years     | and 10 | 0 years |     |
| Dry and wet concrete, Floode                                                       | d hole                               | τ <sub>Rk,ucr</sub> | [N/mm <sup>2</sup> ] | 13,0                         | 12,0   | 13,0      | 12,0         | 11,0   | 11,0    | 8,0 |
| Installation safety factor for Dry and Wet concrete, Flooded hole                  |                                      |                     |                      |                              |        |           |              |        |         |     |
| Dry, wet concrete                                                                  |                                      | γinst               | [-]                  | 1,0                          |        |           |              |        |         |     |
| Flooded hole                                                                       |                                      | γinst               | [-]                  |                              |        |           | 1,2          |        |         |     |
| Characteristic bond resistance in cracked concrete for a working life of 50 years  |                                      |                     |                      |                              |        |           |              |        |         |     |
| Dry and wet concrete, Floode                                                       | d hole                               | τ <sub>Rk,cr</sub>  | [N/mm <sup>2</sup> ] | 8,0                          | 8,0    | 8,0       | 8,0          | 7,0    | 6,5     | 6,0 |
| Characteristic bond resistance in cracked concrete for a working life of 100 years |                                      |                     |                      |                              |        |           |              |        |         |     |
| Dry and wet concrete, Floode                                                       | d hole                               | τ <sub>Rk,cr</sub>  | [N/mm <sup>2</sup> ] | 6,5                          | 7,0    | 7,0       | 7,0          | 7,0    | 6,0     | 5,5 |
| Installation safety factor fo                                                      | r Dry and \                          | Wet c               | oncrete,             | Flooded                      | d hole |           |              |        |         |     |
| Dry, wet concrete                                                                  |                                      | γinst               | [-]                  |                              |        |           | 1,0          |        |         |     |
| Flooded hole                                                                       |                                      | γinst               | [-]                  |                              |        |           | 1,2          |        |         |     |
| Factor for influence of sustain for a working life 50 years                        | ned load                             | $\psi^0$ sus        | [-]                  |                              |        |           | 0,76         |        |         | ·   |
| Factor for concrete                                                                | C25/30<br>C30/37<br>C35/45<br>C40/50 | Ψο                  | [-]                  | 1,02<br>1,04<br>1,06<br>1,07 |        |           |              |        |         |     |
|                                                                                    | C45/55<br>C50/60                     |                     |                      |                              |        |           | 1,08<br>1,09 |        |         |     |

| Concrete cone failure                                   |                   |      |                     |  |  |  |  |  |  |  |
|---------------------------------------------------------|-------------------|------|---------------------|--|--|--|--|--|--|--|
| Factor for concrete cone failure for uncracked concrete | $k_{ucr,N}$       | r 1  | 11                  |  |  |  |  |  |  |  |
| Factor for concrete cone failure for cracked concrete   | <b>k</b> cr,N     | [-]  | 7,7                 |  |  |  |  |  |  |  |
| Edge distance                                           | C <sub>cr,N</sub> | [mm] | 1,5 h <sub>ef</sub> |  |  |  |  |  |  |  |

| Splitting failure |                |      |                      |     |     |     |     |     |     |
|-------------------|----------------|------|----------------------|-----|-----|-----|-----|-----|-----|
| Size              |                |      | Ø8                   | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |
| Edge distance     | <b>C</b> cr,sp | [mm] | 2 h <sub>ef</sub>    |     |     |     |     |     |     |
| Spacing           | Scr,sp         | [mm] | 2 C <sub>cr,sp</sub> |     |     |     |     |     |     |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances                                                                                                                                   | Annex C 5 |
| Diamond core drilling                                                                                                                          |           |
| Characteristic resistance for tension loads - rebar                                                                                            |           |

**Table C7:** Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

| Steel failure without lever arm                |            |           |             |     |     |     |     |     |     |     |
|------------------------------------------------|------------|-----------|-------------|-----|-----|-----|-----|-----|-----|-----|
| Size                                           |            |           | M8          | M10 | M12 | M16 | M20 | M24 | M27 | M30 |
| Steel grade <b>4.6</b>                         | $V_{Rk,s}$ | [kN]      | 7           | 12  | 17  | 31  | 49  | 71  | 92  | 112 |
| Partial safety factor                          | γMs        | [-]       |             |     |     | 1,0 | 67  |     |     |     |
| Steel grade 5.8                                | $V_{Rk,s}$ | [kN]      | 9           | 15  | 21  | 39  | 61  | 88  | 115 | 140 |
| Partial safety factor                          | γMs        | [-]       |             |     |     | 1,  | 25  |     |     | •   |
| Steel grade 8.8                                | $V_{Rk,s}$ | [kN]      | 15          | 23  | 34  | 63  | 98  | 141 | 184 | 224 |
| Partial safety factor                          | γMs        | [-]       | 1,25        |     |     |     |     |     |     |     |
| Steel grade 10.9                               | $V_{Rk,s}$ | [kN]      | 18          | 29  | 42  | 79  | 123 | 177 | 230 | 281 |
| Partial safety factor                          | γMs        | [-]       | 1,5         |     |     |     |     |     |     |     |
| Stainless steel grade A2-70, A4-70             | $V_{Rk,s}$ | [kN]      | 13          | 20  | 30  | 55  | 86  | 124 | 161 | 196 |
| Partial safety factor                          | γMs        | [-]       |             |     |     | 1,  | 56  |     |     |     |
| Stainless steel grade A4-80                    | $V_{Rk,s}$ | [kN]      | 15          | 23  | 34  | 63  | 98  | 141 | 184 | 224 |
| Partial safety factor                          | γMs        | [-]       |             |     |     | 1,  | 33  |     |     |     |
| Stainless steel grade 1.4529                   | $V_{Rk,s}$ | [kN]      | 13          | 20  | 30  | 55  | 86  | 124 | 161 | 196 |
| Partial safety factor                          | γMs        | [-]       |             |     |     | 1,2 | 25  |     |     | •   |
| Stainless steel grade 1.4565                   | $V_{Rk,s}$ | [kN]      | 13          | 20  | 30  | 55  | 86  | 124 | 161 | 196 |
| Partial safety factor                          | γMs        | [-]       |             |     |     | 1,  | 56  |     |     |     |
| Characteristic resistance of group of fa       | steners    |           |             |     |     |     |     |     |     |     |
| Ductility factor $k_7 = 1.0$ for steel with ru | oture elor | ngation . | $A_5 > 8\%$ | 0   |     |     |     |     |     |     |

| Steel failure with lever arm             |                     |       |      |     |     |     |     |      |      |      |
|------------------------------------------|---------------------|-------|------|-----|-----|-----|-----|------|------|------|
| Size                                     |                     |       | M8   | M10 | M12 | M16 | M20 | M24  | M27  | M30  |
| Steel grade 4.6                          | $M^{o}_{Rk,s}$      | [N.m] | 15   | 30  | 52  | 133 | 260 | 449  | 666  | 900  |
| Partial safety factor                    | γMs                 | [-]   |      |     |     | 1,  | 67  |      |      |      |
| Steel grade 5.8                          | $M^{o}_{Rk,s}$      | [N.m] | 19   | 37  | 66  | 166 | 325 | 561  | 832  | 1125 |
| Partial safety factor                    | γMs                 | [-]   |      |     |     | 1,  | 25  |      |      |      |
| Steel grade 8.8                          | $M^{o}_{Rk,s}$      | [N.m] | 30   | 60  | 105 | 266 | 519 | 898  | 1332 | 1799 |
| Partial safety factor                    | γMs                 | [-]   | 1,25 |     |     |     |     |      |      |      |
| Steel grade 10.9                         | $M^{o}_{Rk,s}$      | [N.m] | 37   | 75  | 131 | 333 | 649 | 1123 | 1664 | 2249 |
| Partial safety factor                    | γMs                 | [-]   | 1,50 |     |     |     |     |      |      |      |
| Stainless steel grade A2-70, A4-70       | $M^{o}_{Rk,s}$      | [N.m] | 26   | 52  | 92  | 233 | 454 | 786  | 1165 | 1574 |
| Partial safety factor                    | γMs                 | [-]   |      |     |     | 1,  | 56  |      |      |      |
| Stainless steel grade A4-80              | M <sup>o</sup> Rk,s | [N.m] | 30   | 60  | 105 | 266 | 519 | 898  | 1332 | 1799 |
| Partial safety factor                    | γMs                 | [-]   |      |     |     | 1,  | 33  |      |      |      |
| Stainless steel grade 1.4529             | $M^{o}_{Rk,s}$      | [N.m] | 26   | 52  | 92  | 233 | 454 | 786  | 1165 | 1574 |
| Partial safety factor                    | γMs                 | [-]   |      |     |     | 1,  | 25  |      |      |      |
| Stainless steel grade 1.4565             | $M^{o}_{Rk,s}$      | [N.m] | 26   | 52  | 92  | 233 | 454 | 786  | 1165 | 1574 |
| Partial safety factor                    | γMs                 | [-]   | 1,56 |     |     |     |     |      |      |      |
| Concrete pryout failure                  |                     |       |      |     |     |     |     |      |      |      |
| Factor for resistance to pry-out failure | k <sub>8</sub>      | [-]   |      |     | •   | - : | 2   |      |      |      |

| Concrete edge failure             |      |    |     |     |                      |                      |     |     |     |
|-----------------------------------|------|----|-----|-----|----------------------|----------------------|-----|-----|-----|
| Size                              |      | M8 | M10 | M12 | M16                  | M20                  | M24 | M27 | M30 |
| Outside diameter of fastener dnon | [mm] | 8  | 10  | 12  | 16                   | 20                   | 24  | 27  | 30  |
| Effective length of fastener      | [mm] |    |     | r   | min (h <sub>ef</sub> | , 8 d <sub>nom</sub> | )   |     |     |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Design according to EN 1992-4                                                                                                     | Annex C 6 |
| Characteristic resistance for shear loads - threaded rod                                                                                       |           |

**Table C8:** Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

| Steel failure without lever arm                                            |                        |     |     |     |     |     |     |     |  |  |  |
|----------------------------------------------------------------------------|------------------------|-----|-----|-----|-----|-----|-----|-----|--|--|--|
| Size                                                                       |                        | Ø8  | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |  |  |  |
| Rebar BSt 500 S                                                            | V <sub>Rk,s</sub> [kN] | 14  | 22  | 31  | 55  | 86  | 135 | 221 |  |  |  |
| Partial safety factor                                                      | γMs [-]                | 1,5 |     |     |     |     |     |     |  |  |  |
| Characteristic resistance of group of fasteners                            |                        |     |     |     |     |     |     |     |  |  |  |
| Ductility factor $k_7 = 1,0$ for steel with rupture elongation $A_5 > 8\%$ |                        |     |     |     |     |     |     |     |  |  |  |

| Steel failure with lever arm             |                |       |    |     |     |     |     |      |      |
|------------------------------------------|----------------|-------|----|-----|-----|-----|-----|------|------|
| Size                                     |                |       | Ø8 | Ø10 | Ø12 | Ø16 | Ø20 | Ø25  | Ø32  |
| Rebar BSt 500 S                          | $M^{o}_{Rk,s}$ | [N.m] | 33 | 65  | 112 | 265 | 518 | 1013 | 2122 |
| Partial safety factor                    | γMs            | [-]   |    |     |     | 1,5 |     |      |      |
| Concrete pryout failure                  |                |       |    |     |     |     |     |      |      |
| Factor for resistance to pry-out failure | k <sub>8</sub> | [-]   |    |     |     | 2   |     |      |      |

| Concrete edge failure        |            |      |                                             |     |     |     |     |     |     |
|------------------------------|------------|------|---------------------------------------------|-----|-----|-----|-----|-----|-----|
| Size                         |            |      | Ø8                                          | Ø10 | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |
| Outside diameter of fastener | $d_{nom}$  | [mm] | 8                                           | 10  | 12  | 16  | 20  | 25  | 32  |
| Effective length of fastener | <b>l</b> f | [mm] | min (h <sub>ef</sub> , 8 d <sub>nom</sub> ) |     |     |     |     |     |     |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances                                                                                                                                      | Annex C 7 |
| Design according to EN 1992-4                                                                                                                     |           |
| Characteristic resistance for shear loads - rebar                                                                                                 |           |

**Table C9:** Displacement of threaded rod under tension and shear load Hammer drilling, dustless drilling

|                      | riammer arming, adenese arming |      |      |      |      |      |      |      |      |  |  |
|----------------------|--------------------------------|------|------|------|------|------|------|------|------|--|--|
| Size                 |                                | M8   | M10  | M12  | M16  | M20  | M24  | M27  | M30  |  |  |
| Tensio               | Tension load                   |      |      |      |      |      |      |      |      |  |  |
| Uncrac               | ked concre                     | ete  |      |      |      |      |      |      |      |  |  |
| $\delta_{N0}$        | [mm/kN]                        | 0,03 | 0,02 | 0,02 | 0,02 | 0,01 | 0,01 | 0,01 | 0,01 |  |  |
| $\delta_{N^\infty}$  | [mm/kN]                        | 0,05 | 0,04 | 0,03 | 0,03 | 0,02 | 0,02 | 0,01 | 0,01 |  |  |
| Cracke               | d concrete                     |      |      |      |      |      |      |      |      |  |  |
| $\delta_{\text{N0}}$ | [mm/kN]                        | 0,05 | 0,04 | 0,03 | 0,03 | 0,02 | 0,02 | 0,02 | 0,02 |  |  |
| δ <sub>N∞</sub>      | [mm/kN]                        | 0,35 | 0,21 | 0,14 | 0,12 | 0,08 | 0,07 | 0,07 | 0,07 |  |  |
| Shear                | load                           |      |      |      |      |      |      |      |      |  |  |
| $\delta_{V0}$        | [mm/kN]                        | 0,71 | 0,45 | 0,31 | 0,17 | 0,11 | 0,07 | 0,06 | 0,05 |  |  |
| δ∨∞                  | [mm/kN]                        | 1,06 | 0,67 | 0,46 | 0,25 | 0,16 | 0,11 | 0,08 | 0,07 |  |  |

**Table C10:** Displacement of threaded rod under tension and shear load Diamond core drilling

|                 |              |      | u 0010 | • • • • • • • • • • • • • • • • • • • • | 3    |      |      |      |      |
|-----------------|--------------|------|--------|-----------------------------------------|------|------|------|------|------|
| Size            |              | M8   | M10    | M12                                     | M16  | M20  | M24  | M27  | M30  |
| Tensio          | Tension load |      |        |                                         |      |      |      |      |      |
| Uncrad          | cked concre  | ete  |        |                                         |      |      |      |      |      |
| $\delta_{N0}$   | [mm/kN]      | 0,01 | 0,01   | 0,02                                    | 0,02 | 0,02 | 0,02 | 0,01 | 0,02 |
| δ <sub>N∞</sub> | [mm/kN]      | 0,09 | 0,07   | 0,05                                    | 0,04 | 0,03 | 0,02 | 0,02 | 0,02 |
| Cracke          | ed concrete  |      | -      | -                                       | _    |      |      | -    | _    |
| $\delta_{N0}$   | [mm/kN]      | 0,03 | 0,04   | 0,04                                    | 0,04 | 0,03 | 0,03 | 0,04 | 0,04 |
| δ <sub>N∞</sub> | [mm/kN]      | 0,33 | 0,28   | 0,20                                    | 0,14 | 0,12 | 0,09 | 0,09 | 0,08 |
| Shear           | load         |      |        |                                         |      |      |      |      |      |
| $\delta_{V0}$   | [mm/kN]      | 0,71 | 0,45   | 0,31                                    | 0,17 | 0,11 | 0,07 | 0,06 | 0,05 |
| δ∨∞             | [mm/kN]      | 1,06 | 0,67   | 0,46                                    | 0,25 | 0,16 | 0,11 | 0,08 | 0,07 |

**Table C11:** Displacement of rebar under tension and shear load Hammer drilling, dustless drilling

|                      |             |      |      | ,,   |      |      |      |      |
|----------------------|-------------|------|------|------|------|------|------|------|
| Size                 |             | Ø8   | Ø10  | Ø12  | Ø16  | Ø20  | Ø25  | Ø32  |
| Tension load         |             |      |      |      |      |      |      |      |
| Uncracked concrete   |             |      |      |      |      |      |      |      |
| $\delta_{\text{N0}}$ | [mm/kN]     | 0,04 | 0,03 | 0,02 | 0,01 | 0,01 | 0,01 | 0,01 |
| δ <sub>N∞</sub>      | [mm/kN]     | 0,08 | 0,05 | 0,04 | 0,02 | 0,02 | 0,01 | 0,01 |
| Cracke               | ed concrete |      | _    |      |      |      | -    |      |
| $\delta_{N0}$        | [mm/kN]     | 0,05 | 0,04 | 0,03 | 0,03 | 0,02 | 0,02 | 0,02 |
| δ <sub>N∞</sub>      | [mm/kN]     | 0,35 | 0,21 | 0,17 | 0,11 | 0,08 | 0,07 | 0,06 |
| Shear                | load        | -    | -    |      |      |      | -    |      |
| $\delta_{V0}$        | [mm/kN]     | 0,38 | 0,24 | 0,17 | 0,10 | 0,06 | 0,04 | 0,02 |
| δ∨∞                  | [mm/kN]     | 0,56 | 0,36 | 0,25 | 0,14 | 0,09 | 0,06 | 0,04 |

**Table C12:** Displacement of rebar under tension and shear load Diamond drilling

|                       |             | lamon | a Grilling | 9    |      |      |      |      |
|-----------------------|-------------|-------|------------|------|------|------|------|------|
| Size                  |             | Ø8    | Ø10        | Ø12  | Ø16  | Ø20  | Ø25  | Ø32  |
| Tensio                | n load      |       |            |      |      |      |      |      |
| Uncrad                | cked concre | ete   |            |      |      |      |      |      |
| $\delta_{N0}$         | [mm/kN]     | 0,02  | 0,02       | 0,02 | 0,01 | 0,01 | 0,01 | 0,01 |
| $\delta_{N^{\infty}}$ | [mm/kN]     | 0,09  | 0,06       | 0,04 | 0,03 | 0,02 | 0,01 | 0,01 |
| Cracke                | ed concrete | !     |            |      |      |      |      |      |
| $\delta_{\text{N0}}$  | [mm/kN]     | 0,04  | 0,03       | 0,03 | 0,02 | 0,02 | 0,01 | 0,01 |
| δ <sub>N∞</sub>       | [mm/kN]     | 0,39  | 0,26       | 0,18 | 0,10 | 0,07 | 0,04 | 0,03 |
| Shear                 | load        |       |            |      |      |      | -    |      |
| $\delta_{V0}$         | [mm/kN]     | 0,38  | 0,24       | 0,17 | 0,10 | 0,06 | 0,04 | 0,02 |
| δ∨∞                   | [mm/kN]     | 0,56  | 0,36       | 0,25 | 0,14 | 0,09 | 0,06 | 0,04 |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Displacements                                                                                                                        | Annex C 8 |

| Size                                                  |                         |                      | M8       | M10     | M12           | M16                 | M20              | M24     | M27              | M30     |
|-------------------------------------------------------|-------------------------|----------------------|----------|---------|---------------|---------------------|------------------|---------|------------------|---------|
| Tension load                                          |                         |                      |          |         |               |                     |                  |         |                  |         |
| Steel failure                                         |                         |                      |          |         |               |                     |                  |         |                  |         |
| Characteristic resistance grade <b>4.6</b>            | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 15       | 23      | 34            | 63                  | 98               | 141     | 184              | 224     |
| Partial safety factor                                 | γMs                     | [-]                  | -10      |         | UT            |                     | 00               | 171     | 101              |         |
| Characteristic resistance grade <b>5.8</b>            | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 18       | 29      | 42            | 79                  | 123              | 177     | 230              | 281     |
| Partial safety factor                                 | γMs                     | [-]                  | -10      |         | 72            |                     | 50               | 177     | 200              | 201     |
| Characteristic resistance grade 8.8                   | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 29       | 46      | 67            | 126                 | 196              | 282     | 367              | 449     |
| Partial safety factor                                 | γMs                     | [-]                  |          | 1 10    | 01            |                     | 50               | 202     | 001              | 1 10    |
| Characteristic resistance grade <b>10.9</b>           | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 37       | 58      | 84            | 157                 | 245              | 353     | 459              | 561     |
| Partial safety factor                                 | γMs                     | [-]                  | - 01     | 1 00    | 0.            |                     | 33               | 000     | 100              | 001     |
| Characteristic resistance <b>A2-70</b> , <b>A4-70</b> | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 26       | 41      | 59            | 110                 | 172              | 247     | 321              | 393     |
| Partial safety factor                                 | γMs                     | [-]                  |          | 1 71    | 00            |                     | 87               | 271     | 021              | 000     |
| Characteristic resistance <b>A4-80</b>                | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 29       | 46      | 67            | 126                 | 196              | 282     | 367              | 449     |
| Partial safety factor                                 | γMs                     | [-]                  | 25       | 1 40    | 01            |                     | 60               | 202     | 301              | 773     |
| Characteristic resistance 1.4529                      | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 26       | 41      | 59            | 110                 | 172              | 247     | 321              | 393     |
| Partial safety factor                                 | γMs                     | [-]                  |          | 1 71    | 00            |                     | 50               | <u></u> | 021              | 000     |
| Characteristic resistance 1.4565                      | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 26       | 41      | 59            | 110                 | 172              | 247     | 321              | 393     |
| Partial safety factor                                 | γMs                     | [-]                  | 20       | 1 71    | 00            |                     | 87               | 271     | 021              | 000     |
| Combined pullout and concrete cone fa                 |                         |                      | 0/25 f   | or a wo | rkina         |                     |                  | ars an  | d 100            | vears   |
| Characteristic bond resistance                        | iliaic III co           | iorete Oz            | .0/20 10 | 51 a W  | , ikiiig      |                     | oo ye            | aro arr | <u>a 100</u>     | yeare   |
| Dry and wet concrete, Flooded hole                    | τ <sub>Rk,p,eq,C1</sub> | [N/mm <sup>2</sup> ] | 9,4      | 8.5     | 10,0          | 8,7                 | 7,4              | 7,7     | 5,7              | 4,9     |
| Installation safety factor for Dry and V              |                         |                      |          |         | 10,0          | 0,7                 | Ι,¬              | ,,,     | 5,1              | 7,5     |
| Dry, wet concrete                                     |                         | [_]                  |          | 10      |               | 1                   | ,0               |         |                  |         |
| Hammer drilling – Flooded hole                        | γinst<br>γinst          | [-]                  |          |         |               |                     | ,0<br>,0         |         |                  |         |
| Dustless drilling – Flooded hole                      | γinst                   | [-]                  |          |         |               |                     | , <u>o</u><br>,2 |         |                  |         |
| •                                                     | 7 11101                 | .,                   | L        |         |               |                     | ,                |         |                  |         |
| Shear load                                            |                         |                      |          |         |               |                     |                  |         |                  |         |
| Steel failure without lever arm                       | 1                       |                      | 1        |         |               |                     | 1                | 1       | 1                | 1       |
| Characteristic resistance grade 4.6                   | V <sub>Rk,s,eq,C1</sub> | [kN]                 | 5        | 9       | 13            | 20                  | 32               | 28      | 37               | 45      |
| Partial safety factor                                 | γMs                     | [-]                  |          |         |               |                     | 67               |         |                  | 1       |
| Characteristic resistance grade 5.8                   | $V_{Rk,s,eq,C1}$        | [kN]                 | 7        | 11      | 16            | 26                  | 40               | 35      | 46               | 56      |
| Partial safety factor                                 | γMs                     | [-]                  |          |         |               |                     | 25               |         |                  | 1       |
| Characteristic resistance grade 8.8                   | $V_{Rk,s,eq,C1}$        | [kN]                 | 11       | 17      | 25            | 41                  | 64               | 56      | 73               | 90      |
| Partial safety factor                                 | γMs                     | [-]                  |          |         |               |                     | 25               |         |                  |         |
| Characteristic resistance grade 10.9                  | $V_{Rk,s,eq,C1}$        | [kN]                 | 14       | 22      | 32            | 51                  | 80               | 71      | 92               | 112     |
| Partial safety factor                                 | γMs                     | [-]                  |          |         |               | 1,                  | 50               |         |                  |         |
| Characteristic resistance A2-70, A4-70                | $V_{Rk,s,eq,C1}$        | [kN]                 | 10       | 15      | 22            | 36                  | 56               | 49      | 64               | 79      |
| Partial safety factor                                 | γMs                     | [-]                  |          |         |               | 1,                  | 56               |         |                  |         |
| Characteristic resistance A4-80                       | $V_{Rk,s,eq,C1}$        | [kN]                 | 11       | 17      | 25            | 41                  | 64               | 56      | 73               | 90      |
| Partial safety factor                                 | γMs                     | [-]                  |          |         |               | 1,                  | 33               |         |                  |         |
| Characteristic resistance 1.4529                      | $V_{Rk,s,eq,C1}$        | [kN]                 | 10       | 15      | 22            | 36                  | 56               | 49      | 64               | 79      |
| Partial safety factor                                 | γMs                     | [-]                  |          |         |               | 1,                  | 25               |         |                  |         |
| Characteristic resistance 1.4565                      | $V_{Rk,s,eq,C1}$        | [kN]                 | 10       | 15      | 22            | 36                  | 56               | 49      | 64               | 79      |
| Partial safety factor                                 | γMs                     | [-]                  |          |         |               | 1,                  | 56               |         |                  |         |
| Characteristic shear load resistance VRk,             |                         |                      |          |         |               | y follo             | wing r           | educti  | on fac           | tor for |
|                                                       | galvanized              | l commer             |          |         |               |                     |                  |         |                  |         |
| Reduction factor for hot-dip galvanized rods          | αν,h-dg,c1              | [-]                  | 0,47     | 0,47    | 0,47          | 0,54                | 0,54             | 0,88    | 0,88             | 0,88    |
| Factor for annular gap                                | $lpha_{\sf gap}$        | [-]                  |          |         |               | 0                   | ,5               |         |                  |         |
| The angles shall be used with with the                |                         | olenas:              | on cf    | 0       | 4             |                     | )/               |         |                  |         |
| The anchor shall be used with minimu                  |                         |                      |          | er trac | ture <i>F</i> | 1 <sub>5</sub> ≥ 9° | /0.              |         |                  |         |
| ChemSet™ Reo502™ Plus, ChemSe                         | et™ Epco                | n™ C6 F              | lus,     |         |               |                     |                  |         |                  |         |
| ShemSet™ Epcon™ G5 PRO                                |                         |                      |          |         |               |                     |                  |         |                  |         |
| erformances                                           |                         |                      |          |         |               |                     | ,                | Anne    | ر <del>ر</del> م |         |
|                                                       |                         |                      |          |         |               |                     | -                | 1111E   |                  |         |
| lammer drilling, Dustless drilling                    |                         |                      |          |         |               |                     |                  |         |                  |         |

| Table C14: Seismic | performance category | C1 of rebar - H | lammer drilling. | Dustless drilling |
|--------------------|----------------------|-----------------|------------------|-------------------|
|                    |                      |                 |                  |                   |

| Size                                                                                                       |                  |                      | Ø10     | Ø12 | Ø16 | Ø20 | Ø25 | Ø32 |  |
|------------------------------------------------------------------------------------------------------------|------------------|----------------------|---------|-----|-----|-----|-----|-----|--|
| Tension load                                                                                               |                  |                      |         |     |     |     |     |     |  |
| Steel failure                                                                                              |                  |                      |         |     |     |     |     |     |  |
| Rebar BSt 500 S                                                                                            | $N_{Rk,s,eq,C1}$ | [kN]                 | 43      | 62  | 111 | 173 | 270 | 442 |  |
| Partial safety factor                                                                                      | γMs              | [-]                  |         |     | 1   | 4   |     |     |  |
| Combined pullout and concrete cone failure in concrete C20/25 for a working life of 50 years and 100 years |                  |                      |         |     |     |     |     |     |  |
| Characteristic bond resistance                                                                             |                  |                      |         |     |     |     |     |     |  |
| Dry and wet concrete, Flooded hole                                                                         | τRk,p,eq,C1      | [N/mm <sup>2</sup> ] | 9,4     | 9,8 | 9,5 | 8,8 | 8,0 | 5,3 |  |
| Installation safety factor for Dry and                                                                     | Wet concre       | te, Flood            | ed hole |     |     |     |     |     |  |
| Hammer drilling - Dry, wet concrete                                                                        | γinst            | [-]                  |         |     | 1   | 0   |     |     |  |
| Dustless drilling - Dry, wet concrete                                                                      | [-]              |                      |         | 1   | 2   |     |     |     |  |
| Flooded hole                                                                                               | γinst            | [-]                  |         |     | 1   | 2   |     |     |  |

| Shear load                      |                  |      |    |    |    |    |    |     |
|---------------------------------|------------------|------|----|----|----|----|----|-----|
| Steel failure without lever arm |                  |      |    |    |    |    |    |     |
| Rebar BSt 500 S                 | $V_{Rk,s,eq,C1}$ | [kN] | 16 | 23 | 41 | 69 | 67 | 111 |
| Partial safety factor           | γMs              | [-]  |    |    | 1  | ,5 |    |     |
| Factor for annular gap          | $lpha_{\sf gap}$ | [-]  |    |    | 0  | ,5 |    |     |

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |            |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances                                                                                                                                   | Annex C 10 |
| Hammer drilling, Dustless drilling                                                                                                             |            |
| Seismic performance category C1 of rebar                                                                                                       |            |

Table C15: Seismic performance category C2 of threaded rod - Hammer drilling, Dustless drilling

| Size                                       |                         |                      | M12                | M16               | M20       |
|--------------------------------------------|-------------------------|----------------------|--------------------|-------------------|-----------|
| Tension load                               |                         |                      |                    |                   |           |
| Steel failure                              |                         |                      |                    |                   |           |
| Characteristic resistance grade 4.6        | $N_{Rk,s,eq,C2}$        | [kN]                 | 34                 | 63                | 98        |
| Partial safety factor                      | γMs                     | [-]                  |                    | 2,00              |           |
| Characteristic resistance grade 5.8        | N <sub>Rk,s,eq,C2</sub> | [kN]                 | 42                 | 79                | 123       |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,50              |           |
| Characteristic resistance grade 8.8        | N <sub>Rk,s,eq,C2</sub> | [kN]                 | 67                 | 126               | 196       |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,50              |           |
| Characteristic resistance grade 10.9       | $N_{Rk,s,eq,C2}$        | [kN]                 | 84                 | 157               | 245       |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,33              |           |
| Characteristic resistance A2-70, A4-70     | $N_{Rk,s,eq,C2}$        | [kN]                 | 59                 | 110               | 172       |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,87              |           |
| Characteristic resistance A4-80            | N <sub>Rk,s,eq,C2</sub> | [kN]                 | 67                 | 126               | 196       |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,60              |           |
| Characteristic resistance 1.4529           | $N_{Rk,s,eq,C2}$        | [kN]                 | 59                 | 110               | 172       |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,50              |           |
| Characteristic resistance 1.4565           | $N_{Rk,s,eq,C2}$        | [kN]                 | 59                 | 110               | 172       |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,87              |           |
| Combined pullout and concrete cone fai     | lure in concre          | ete C20/25           | for a working life | e of 50 years and | 100 years |
| Characteristic bond resistance             |                         |                      |                    |                   |           |
| Ory and wet concrete, Flooded hole         | τ <sub>Rk,p,eq,C2</sub> | [N/mm <sup>2</sup> ] | 3,5                | 4,0               | 4,5       |
| nstallation safety factor for Dry and Wet  | t concrete, Fl          | ooded hole           | !                  |                   |           |
| Ory and wet concrete, Flooded hole         | γinst                   | [-]                  |                    | 1,0               |           |
| Dustless drilling – Flooded hole           | γinst                   | [-]                  |                    | 1,2               |           |
| Shear load                                 |                         |                      |                    |                   |           |
| Steel failure without lever arm            |                         |                      |                    |                   |           |
| Characteristic resistance grade <b>4.6</b> | $V_{Rk,s,eq,C2}$        | [kN]                 | 13                 | 18                | 28        |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,67              |           |
| Characteristic resistance grade 5.8        | V <sub>Rk,s,eq,C2</sub> | [kN]                 | 16                 | 22                | 35        |
| Partial safety factor                      | γMs                     | [-]                  | -                  | 1,25              |           |
| Characteristic resistance grade 8.8        | $V_{Rk,s,eq,C2}$        | [kN]                 | 25                 | 36                | 56        |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,25              |           |
| Characteristic resistance grade 10.9       | $V_{Rk,s,eq,C2}$        | [kN]                 | 32                 | 45                | 70        |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,50              |           |
| Characteristic resistance A2-70, A4-70     | $V_{Rk,s,eq,C2}$        | [kN]                 | 22                 | 31                | 49        |
| Partial safety factor                      | γΜs                     | [-]                  |                    | 1,56              |           |
| Characteristic resistance A4-80            | V <sub>Rk,s,eq,C2</sub> | [kN]                 | 25                 | 36                | 56        |
| Partial safety factor                      | γMs                     | [-]                  | -                  | 1,33              |           |
| Characteristic resistance 1.4529           | V <sub>Rk,s,eq,C2</sub> | [kN]                 | 22                 | 31                | 49        |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,25              |           |
| Characteristic resistance 1.4565           | V <sub>Rk,s,eq,C2</sub> | [kN]                 | 22                 | 31                | 49        |
| Partial safety factor                      | γMs                     | [-]                  |                    | 1,56              |           |

Characteristic shear load resistance V<sub>Rk,s,eq</sub> in the Table C9 shall be multiplied by following reduction factor for **hot-dip galvanized** commercial standard rods

| galvanized commercial standard rods          |            |     |      |      |      |  |  |
|----------------------------------------------|------------|-----|------|------|------|--|--|
| Reduction factor for hot-dip galvanized rods | αv,h-dg,c2 | [-] | 0,46 | 0,61 | 0,61 |  |  |
| Factor for annular gap                       | agan       | [-] |      | 0.5  |      |  |  |

Table C16: Displacement under tensile and shear load - seismic category C2 of threaded rod

| Size                 |      | M12   | M16  | M20   |
|----------------------|------|-------|------|-------|
| $\delta_{N,eq(DLS)}$ | [mm] | 0,20  | 0,40 | 0,77  |
| $\delta_{N,eq(ULS)}$ | [mm] | 0,76  | 0,74 | 1,68  |
| $\delta$ V,eq(DLS)   | [mm] | 5,29  | 4,12 | 4,94  |
| $\delta$ V,eq(ULS)   | [mm] | 10,20 | 9,05 | 10,99 |

The anchor shall be used with minimum rupture elongation after fracture  $A_5 \ge 9\%$ .

| ChemSet <sup>™</sup> Reo502 <sup>™</sup> Plus, ChemSet <sup>™</sup> Epcon <sup>™</sup> C6 Plus,<br>ChemSet <sup>™</sup> Epcon <sup>™</sup> G5 PRO |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances                                                                                                                                      | Annex C 11 |
| Hammer drilling, Dustless drilling                                                                                                                |            |
| Seismic performance category C2 of threaded rod                                                                                                   |            |