

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

European Technical Assessment ETA-24/0954 of 2024/10/15

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

ITW Australia (Ramset)

part of the document

1 Ramset Drive Chirnside Park

concrete

VIC 3116 AUSTRALIA ITW Plant 1

Trade name of the construction product:

Product family to which the above construction product belongs:

Manufacturer:

Manufacturing plant:

This European Technical Assessment contains:

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EAD 330232-01-0601; Mechanical fasteners for use in concrete

18 pages including 11 annexes which form an integral

Mechanical fasteners for use in cracked and uncracked

Note:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product

The RamsetTM concrete screw AnkaScrewTM Tapcon XtremTM is an anchor made of zinc plated steel. The AnkaScrewTM Tapcon XtremTM comes in size 6 with an embedment depth of 40 mm or 55 mm. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterized by mechanical interlock in the special thread.

The product description is given in Annex A and the intended use specifications of the product are detailed in Annex B.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Characteristic

Reaction to fire

Assessment of characteristic

3.1 Mechanical resistance and stability (BWR1)

Characteristic resistance to tension load (static and quasi-static loading) Method A

Resistance to steel failure	Annex C
Resistance to pull-out failure	Annex C
Resistance to concrete cone failure	Annex C
Robustness	Annex C
Minimum edge distance and spacing	Annex B
Edge distance to prevent splitting under load	Annex B
Characteristic resistance to shear load (static an	nd quasi-static loading)
Resistance to steel failure under shear load	Annex C
Resistance to pry-out failure	Annex C
Characteristic resistance for simplified design	
Method B	Annex C
Method C	Annex C
Displacements	
Displacements under static and quasi-static loading	Annex C
Characteristic resistance and displacements for	seismic performance categories C1
Resistance to tension load, displacements	Annex C
Resistance to shear load, displacements	Annex C
Factor for annual gap	Annex C
3.2 Safety in case of fire (BWR2)	

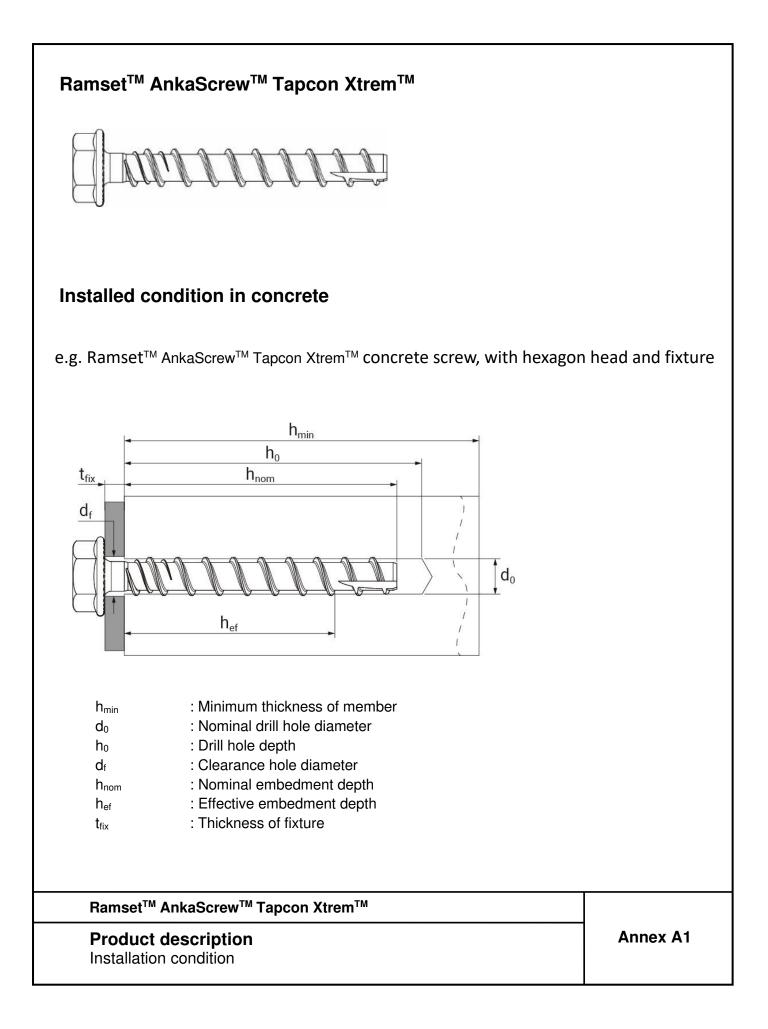
Class A1

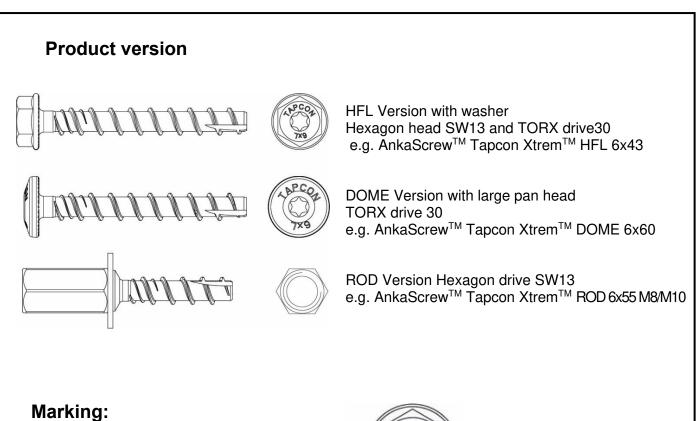
Characteristic	Assessment of characteristic
Resistance to fire	
Fire resistance to steel failure (tension load)	Annex C
Fire resistance to pull-out failure (tension load)	Annex C
Fire resistance to steel failure (shear load)	Annex C
3.3 Aspects of durability	
Durability	Annex B
See additional information in section 3.9	

3.9 General aspects related to the performance of the product

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary. 4 Assessment and verification of constancy of performance (AVCP) (hereinafter AVCP) system applied, with reference to its legal base.

4.1 AVCP system


According to the decision 1996/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No. 305/2011) is **1**.


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2024-10-15 by

Thomas Bruun Managing Director, ETA-Danmark

- Designation: TAPCON
- Screw size:
- 6 Screw length: 60

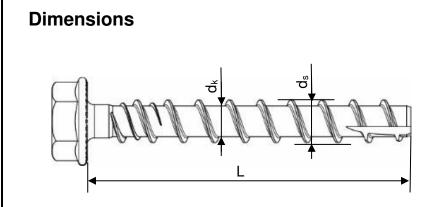

Material

Table A1: Material

Product name	Material
AnkaScrew [™] Tapcon Xtrem [™]	Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2022

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

Product description Product versions, Marking, and Material

Table A2: Dimensions

Fastener size AnkaScrew [⊤]	[™] Tapcon	Xtrem™	6
Screw length	≤L	[mm]	100
Core diameter	dĸ	[mm]	5,8
Thread outer diameter	ds	[mm]	8,0

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

Product description Dimensions Annex A3

Specification of Intended use

Table B1 : Anchorages subject to:

Fastener size AnkaScrew [™] Tap	con Xtrem™	(6
Naminal ambadmant danth	h _{nom}	h _{nom1}	h _{nom2}
Nominal embedment depth	[mm]	40	55
Static and quasi-static loads		✓	✓
Fire exposure		✓	✓
C1 seismic category performant	се	✓	✓

Base materials:

- Compacted reinforced and unreinforced concrete without fibres of concrete Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked or uncracked concrete.

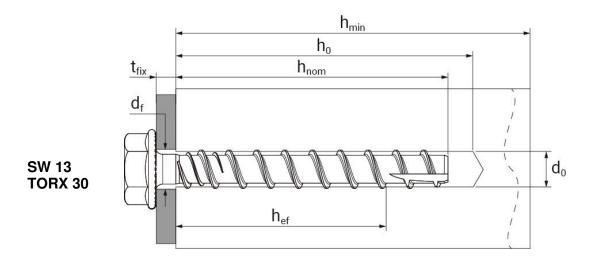
Use conditions (Environmental conditions):

• Concrete screws subject to dry internal conditions: all screw types.

Design:

- Anchorages are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

Intended use Specification

Table B2 : Setting data in concrete for AnkaScrew[™] Tapcon Xtrem[™] HFL / DOME / ROD

Fastener size AnkaScrew™ Tapcon Xtre	em™					6		
Туре			HFL	DOME	ROD	HFL	DOME	ROD
Neminal embedment dent	h	h _{nom}		h _{nom1}			h _{nom2}	
Nominal embedment dept	[]	[mm]		40			55	
Nominal drill hole diameter	do	[mm]	6			6		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40					
Drill hole depth	h₀ ≥	[mm]		50			65	
Clearance hole diameter	d _f ≤	[mm]			ę	9		
Wrench size	SW	[mm]	13	-	13	13	-	13
Torx Size	ТΧ	[-] 30 30 - 30 30		-				
Torque impact screw drive (Max. torque according to manufacturer's instruction		[Nm]		170			210	

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

Intended use Installation parameters

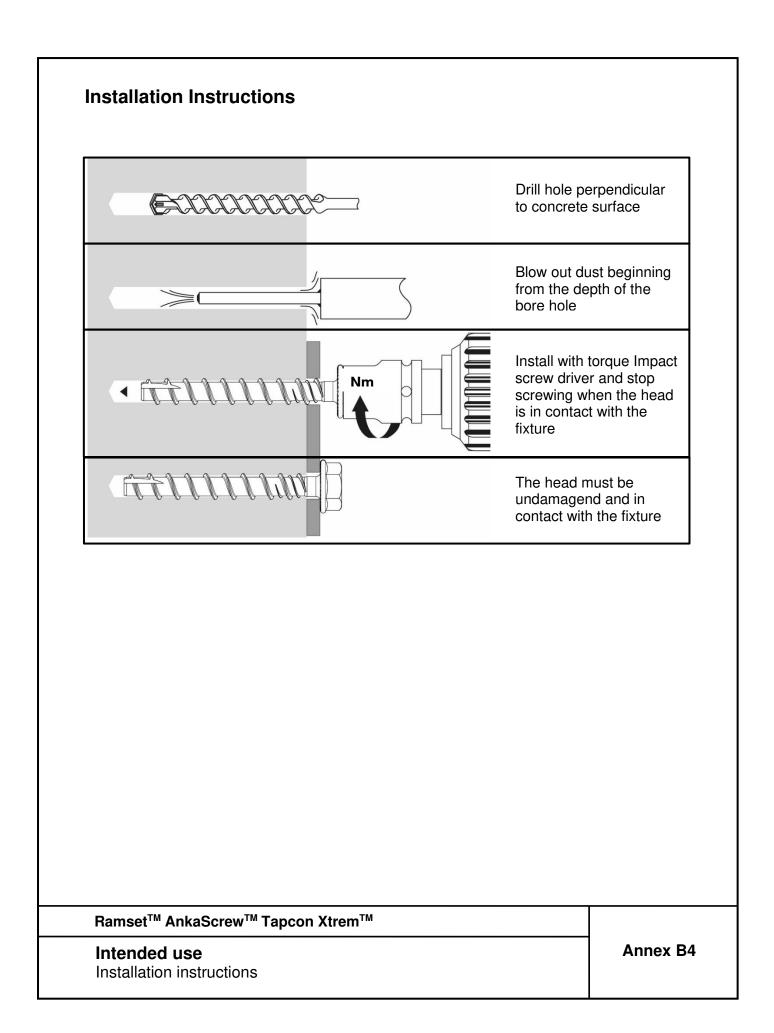

Annex B2

Table B3: Minimum thickness of member, minimum edge distance andminimum spacing

Fastener size AnkaScrew [™] Tapcon >	Ktrem™		(6
Nominal ambadmant d	onth	h _{nom}	h _{nom1}	h _{nom2}
Nominal embedment de	epin	[mm]	40	55
Minimum thickness of member	h _{min}	[mm]	80	100
Minimum edge distance	C _{min}	[mm]	4	0
Minimum spacing	S _{min}	[mm]	4	0

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

Intended use Minimum thickness of member, minimum edge distance and minimum spacing Annex B3

Table C1: Characteristic values for static and quasi-static loading

Fastener size AnkaScrew™⊺	Fapcon Xtrem™ HFL /	DOME / F	ROD		6
	•		h _{nom}	h _{nom1}	h _{nom2}
Nominal embe	edment depth	ľ	[mm]	40	55
Steel failure	for tension and she	ear loadi	ng		
Characteristic	tension load	N _{Rk,s}	[kN]	23	3,6
Partial factor		γMs,N	[-]	1	,4
Characteristic	shear load	V ⁰ Rk,s	[kN]	8	5,5
Partial factor		γMs,V	[-]	1	,5
Ductility facto	r	k 7	[-]	0,	98
Characteristic	bending load	M ⁰ Rk,s	[Nm]	22	2,9
Pull-out failu	re	••			
	tension load in ncrete C20/25	N _{Rk,p}	[kN]	7,0	10,0
	C25/30			1,04	1,08
Increasing	ng C30/37		, F	1,07	1,14
tactor for	C40/50	Ψ _c	[-]	1,13	1,26
∎ Кк,р	C50/60			1,17	1,35
Characteristic tension load in cracked concrete C20/25		N _{Rk,p}	[kN]	2,5	5,5
Increasing factor for	C25/30	Ψ _c		1,12	1,05
	C30/37		[-]	1,22	1,08
	C40/50			1,41	1,15
N _{Rk,p}	C50/60		Γ	1,58	1,20
Installation sa	afety factor	γinst	[-]	1,4	1,2
Concrete cor	ne failure and split		re		
Effective emb	edment depth	h _{ef}	[mm]	31,5	44,3
k faatar	cracked	k _{cr,N}	[-]	7	' ,7
k-factor	uncracked	k _{ucr,N}	[-]	1	1,0
Concrete	spacing	S _{cr,N}	[mm]	3	h _{ef}
cone failure	Edge distance	C _{cr,N}	[mm]	1,5	5 h _{ef}
Colitting	resistance	N ⁰ Rk,sp	[kN]	N	Rk,p
Splitting failure	spacing	S _{cr,sp}	[mm]	180	200
	edge distance	C _{cr,sp}	[mm]	90	100
Installation sa	afety factor	γinst	[-]	1,4	1,2
Concrete pry	out failure				
Factor for pry-	-out failure	k ₈	[-]	1	,0
Installation sa	fety factor	γinst	[-]	1	,0
Concrete edg	ge failure				
Effective leng	th in concrete	$I_{\rm f} = h_{\rm ef}$	[mm]	31,5	44,3
Nominal outer	r diameter of screw	d _{nom}	[mm]	6	6
Installation sa	fety factor	γinst	[-]	1	,0

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

Performances Characteristic values for static and quasi-static loading

Annex C1

Fastener size AnkaScrew™ Tapcon Xtrem™ HFL / D0		6		
New inclowed a set double		h _{nom}	h _{nom1}	h _{nom2}
Nominal embedment depth	Nominal embedment depth			55
Steel failure for tension and shear	r load			
Characteristic tension load	N _{Rk,s,C1}	[kN]	23	3,6
Partial factor	γMs,N	[-]	1	,4
Characteristic shear load	V _{Rk,s,C1}	[kN]	4,3	7,3
Partial factor	γMs,V		1	,5
Pull-out failure				
Characteristic tension load in cracked concrete C20/25	NRk,p,C1	[kN]	2,2	4,4
Installation safety factor	γinst	[-]	1,4	1,2
Concrete cone failure				
Effective embedment depth	h _{ef}	[mm]	31,5	44,3
Edge distance	C _{cr,N}	[mm]	1,5	h _{ef}
Spacing	S _{cr,N}	[mm]	3	h _{ef}
Installation safety factor	γinst	[-]	1,4	1,2
Concrete pry-out failure				
Factor for pry-out failure	k ₈	[-]	1	,0
Installation safety factor			1,0	
Concrete edge failure				
Effective length in concrete	$I_{\rm f} = h_{\rm ef}$	[mm]	31,5	44,3
Nominal outer diameter of screw	d _{nom}	[mm]	6	6
Installation safety factor	γinst	[-]	1	.0

Т

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

Performances Seismic category C1 – Characteristic load values Annex C2

Fastener size	e AnkaScrew™Tap	ocon Xtre	em™	6	6
			h _{nom}	h _{nom1}	h _{nom2}
Nominal emic	al embedment depth		[mm]	40	55
Cracked concrete	tension load	Ν	[kN]	1,2	2,4
	diante comont	δ_{N0}	[mm]	0,03	0,01
	displacement	δ _{N∞}	[mm]	0,30	0,32
	tension load	Ν	[kN]	3,3	4,8
Uncracked concrete	diante comont	δ_{N0}	[mm]	0,04	0,02
concrete	ncrete displacement	δ _{N∞}	[mm]	0,07	0,17

Table C4 : Displacements under static and quasi-static

Fastener size	AnkaScrew™ Tap	ocon Xtre	em™	6	3
Nominal amb	admant danth		h _{nom}	h _{nom1}	h _{nom2}
Nominal emb	edment depth		[mm]	40	55
Cracked	shear load	٧	[kN]	4	,0
and		δ_{V0}	[mm]	0,	83
uncracked concrete	displacement	δv∞	[mm]	1,;	25

Ramset[™] AnkaScrew[™] Tapcon Xtrem[™]

Performances Displacements under static and quasi-static loads

Annex C3

Fastener size AnkaScrew [™] Tapcon 2	Xtrem [™] HFL /	DOME / ROE	ОМ		6
·			h _{nom}	h _{nom1}	h _{nom2}
Nominal embedment	depth		[mm]	40	55
Steel failure for tens	sion and she	ar load			
	R30	N _{Rk,s,fi30}	[kN]	1,00	1,50
	R60	N _{Rk,s,fi60}	[kN]	1,00	1,28
	R90	N _{Rk,s} ,fi90	[kN]	0,70	0,84
	R120	N _{Rk,s,fi120}	[kN]	0,54	0,62
	R30	V _{Rk,s,fi30}	[kN]	1,00	1,50
Characteristic	R60	V _{Rk,s,fi60}	[kN]	1,00	1,28
resistance	R90	V _{Rk,s,fi90}	[kN]	0,70	0,84
	R120	V _{Rk,s,fi120}	[kN]	0,54	0,62
	R30	M ⁰ _{Rk,s,fi30}	[kNm]	0,76	1,14
	R60	M ⁰ _{Rk,s,fi60}	[kNm]	0,76	0,97
	R90	M ⁰ _{Rk,s,fi90}	[kNm]	0,53	0,64
	R120	M ⁰ _{Rk,s,fi120}		0,41	0,47
Pull-out failure		•			
Characteristic	R30-90	N _{Rk,p,fi}	[kN]	0,60	1,4
resistance	R120	N _{Rk} ,p,fi	[kN]	0,50	1,1
Concrete cone failu	re				
Characteristic	R30-90	N _{Rk,c,fi}	[kN]	1,2	2,9
resistance	R120	N _{Rk,c,fi}	[kN]	1,0	2,3
Edge distance					
R30 - R120		C _{cr,N,fi}	[mm]	2 >	k h _{ef}
In case of fire attack	from more tha	an one side,	the minim	um edge distance	e shall be ≥300mm
Spacing distance		6	[mm]		. h
R30 - R120		S _{cr,N,fi}	[mm]	4 >	k h _{ef}
Pryout failure R30 - R120		k ₈	[-]	1.0	1.0
	R30-90		[+] [kN]	1,0 1,2	1,0 2,9
Characteristic resistance	R120		[kN]	1,2	2,9
The anchorage depth the given value.		V _{Rk,cp,fi} creased for v		-	-
amset [™] AnkaScre	WTM Tanaan	VtromTM			
erformances		VIGUI			Anr